Compressed Sensing for fusion frames

Petros Boufounos
Mitsubishi Electric Research Laboratories

Gitta Kutyniok
University of Osnabrück

Holger Rauhut
University of Bohn
COMPRESSED SENSING
Compressed Sensing Measurement Model

\[y = A x \]

- \(n \times 1 \) measurements
- \(n = O(K \log N/K) \)
- \(A \) has RIP of order \(2K \) with constant \(\delta \)
- \(\mu \triangleq \max_{i \neq j} |\langle a_i, a_j \rangle| \)
- \(A \) also has small coherence

- \(x \) is \(K \)-sparse or \(K \)-compressible
- \(A \) random, satisfies a restricted isometry property (RIP)

If there exists \(\delta \) s.t. for all \(2K \)-sparse \(x \):

\[(1 - \delta)\|x\|_2^2 \leq \|Ax\| \leq (1 + \delta)\|x\|_2^2 \]
CS Reconstruction

• Reconstruction using **sparse approximation**:
 – Find sparsest \(x \) such that \(y \approx \Phi x \)

• **Convex optimization** approach:
 – Minimize \(l_1 \) norm: e.g.,
 \[
 \hat{x} = \arg \max_x ||x||_1 \quad \text{s.t.} \quad y = Ax
 \]

• **Greedy algorithms** approach:
 – MP, OMP, ROMP, StOMP, CoSaMP, …
 – PYAMP (Pick Your Acronym Matching Pursuit)

• If coherence \(\mu \) or RIP \(\delta \) is **small**: Exact reconstruction
FUSION FRAMES
Fusion Frame

A collection of subspaces \(\{W_j\}, j=1,\ldots,N \) and a set of weights \(v_j \) such that there exist universal constants \(0<A\leq B<\infty \):

\[
A\|x\|_2^2 \leq \sum_{j=1}^{N} v_j^2 \|P_j(x)\|_2^2 \leq B\|x\|_2^2, \text{ for all } x \in \mathbb{R}^M
\]

Similar to the definition of a frame:

\[
A\|x\|_2^2 \leq \sum_{j=1}^{N} |\langle f_j, x \rangle|_2^2 \leq B\|x\|_2^2, \text{ for all } x \in \mathbb{R}^M
\]

Extends the concepts of a frame to a richer, more descriptive representation
Fusion Frame

A collection of subspaces \(\{ W_j \}, j=1, \ldots, N \) and a set of weights \(v_j \) such that there exist universal constants \(0 < A \leq B < \infty \):

\[
A \| x \|_2^2 \leq \sum_{j=1}^{N} v_j^2 \| P_j (x) \|_2^2 \leq B \| x \|_2^2, \quad \text{for all } x \in \mathbb{R}^M
\]

Projection onto \(W_j \)

Similar to the definition of a frame:

\[
A \| x \|_2^2 \leq \sum_{j=1}^{N} | \langle f_j, x \rangle |_2^2 \leq B \| x \|_2^2, \quad \text{for all } x \in \mathbb{R}^M
\]

Extends the concepts of a frame to a richer, more descriptive representation
Fusion Frame Vectors

\[x_1 + x_2 + x_3 + \ldots + x_N = x \in \mathbb{R}^M \]

Fusion frame vector:

\[x = \sum_{j=1}^{N} v_j x_j, \quad x_j \in W_j, \quad j = 1, \ldots, N \]

The \(x_j \) can be thought of as vector-valued “coefficients”
Fusion Frame Sparsity

Fusion frame vector: \[\mathbf{x} = \sum_{j=1}^{N} v_j x_j, \quad x_j \in W_j, \quad j = 1, \ldots, N \]

The \(x_j \) can be thought of as vector-valued “coefficients”

Sparsity: very few of the \(x_j \) are non-zero
COMPRESSED SENSING FOR FUSION FRAMES
Fusion Frame Measurements

\[y = xA^T \]

- \(y \) has \(M \) measurements dimension
- \(x \) has a **sparse** fusion frame representation
- \(A^T \) has \(N \) fusion frame “coefficients”

Can we recover \(x \) using an \(l_1 \)-type minimization?

But what is \(l_1 \) in this case?
Fusion frame l_1 Norm

Fusion frame l_1 norm: mixed l_1/l_2 norm of the fusion frame coefficients

Signal Recovery:

$$\hat{x} = \arg\min_x \|x\|_1 \text{ s.t. } y = xA^T$$

When does this work?
Compressed Sensing Measurement Model

\[n \times 1 \text{ measurements} = A \quad K < n \ll N \quad \text{sparse signal} \]

- \(x \) is \(K \)-sparse or \(K \)-compressible
- \(A \) random, satisfies a restricted isometry property (RIP)
 - \(A \) has RIP of order \(2K \) with constant \(\delta \)
 - If there exists \(\delta \) s.t. for all \(2K \)-sparse \(x \):
 \[(1 - \delta)\|x\|_2^2 \leq \|Ax\| \leq (1 + \delta)\|x\|_2^2 \]
- \(n = O(K \log N / K) \)
- \(A \) also has small coherence

\[\mu \triangleq \max_{i \neq j} |\langle a_i, a_j \rangle| \]
Compressed Sensing Measurement Model

\[\begin{align*}
\mathbf{y} &= \mathbf{A} \mathbf{x} \\
n \times 1 & \quad \text{measurements} \\
K & \leq n \ll N \\
N \times 1 & \quad \text{sparse \ signal} \\
K & \quad \text{nonzero \ entries}
\end{align*} \]

- \(\mathbf{x} \) is \(K \)-sparse or \(K \)-compressible
- \(\mathbf{A} \) random, satisfies a restricted isometry property (RIP)
- \(n = O(K \log N / K) \)
- \(\mathbf{A} \) also has small coherence

\[\mu \triangleq \max_{i \neq j} |\langle \mathbf{a}_i, \mathbf{a}_j \rangle| \]

Equivalent for fusion frame measurements?
Restricted Isometry Property

If A has RIP of order $2K$ we can still recover vectors with a K-sparse fusion frame representation.

- RIP definition does not change
- Recovery using l_1/l_2 minimization

$$\hat{x} = \arg\min_x \|x\|_1 \text{ s.t. } y = xA^T$$

- RIP definition doesn’t change.
- Special structure of the fusion frame not incorporated in the RIP

Fusion l_1 norm (mixed l_1/l_2)
Fusion Coherence

\[
\mu_f = \max_{j \neq k} \left[|\langle a_j, a_k \rangle| \cdot |\lambda_{\text{max}} (P_j P_k)|^{1/2} \right]
\]

Reconstruction possible if:

\[
K < \frac{1}{2} \left(1 - \mu_f^{-1} \right)
\]

- \(P_j, P_k\): Projection onto \(W_j, W_k\)

- \(\lambda_{\text{max}}\): Largest eigenvalue of \((P_j P_k)\)
 - max cosine of principal angles between subspaces
 - Large angles \(\leftrightarrow\) small \(\lambda_{\text{max}}\) \(\leftrightarrow\) can have large \(|\langle a_j, a_k \rangle|\)

- Incorporates information about subspace structure
Fusion Coherence

\[\mu_f = \max_{j \neq k} \left[\langle a_j, a_k \rangle \cdot |\lambda_{\text{max}}(P_j P_k)|^{1/2} \right] \]

Standard Definition

Incorporates fusion frame properties

Reconstruction possible if:

\[K < \frac{1}{2} \left(1 - \mu_f^{-1} \right) \]

- **\(P_j, P_k \): Projection onto \(W_j, W_k \)**
- **\(\lambda_{\text{max}} \): Largest eigenvalue of \((P_j P_k) \)**
 - max cosine of principal angles between subspaces
 - Large angles \(\leftrightarrow \) small \(\lambda_{\text{max}} \) \(\leftrightarrow \) can have large \(|\langle a_j, a_k \rangle|\)
- **Incorporates information about subspace structure**
Block Sparsity

Mixed l_1/l_2 norm known to work and proven if A has RIP.

Blocks are not allowed to overlap
Joint Sparsity

\[y = A x \]
Joint sparsity is a special case of block sparsity.

The measurement matrix \hat{A} has special structure.

Mixed l_1/l_2 norm works here as well if A has RIP.
Fusion Frame Measurements

\[y = x A^T \]
Fusion Frame Measurements

Fusion frame measurements generalize joint sparsity measurements

We use extra information on the subspaces to relax the requirements on A

If $W_1=W_2=\ldots=W_N=\mathbb{R}^M$ we revert to joint sparsity

If $W_1=W_2=\ldots=W_N=\mathbb{R}$ we revert to standard CS

We are still a special case of block sparsity
Model Hierarchy

Block Sparsity
K out of N
blocs of length M

Fusion Frames Sparsity
K out of N
subspaces of \mathbb{R}^M

Joint Sparsity
M vectors in \mathbb{R}^N
K out of N jointly sparse
components

Standard Sparsity
1 vector in \mathbb{R}^N
K nonzero
components

Structured \hat{A}

All W_j same

All $W_j = \mathbb{R}$
Model Hierarchy

- **Standard Sparsity**
 - 1 vector in \mathbb{R}^{NM}
 - KM nonzero components

- **Joint Sparsity**
 - M vectors in \mathbb{R}^N
 - K out of N jointly sparse components

- **Fusion Frames Sparsity**
 - K out of N subspaces of \mathbb{R}^M

- **Block Sparsity**
 - K out of N blocks of length M
Application/Motivation: Dictionaries of Subspaces

• Targets that span subspaces
 – e.g., harmonics of a fundamental frequency

• The dictionary becomes a collection of subspaces
 – Musical instruments
 – Vehicle identification

• First step for hierarchical identification
 – Once the subspace is identified, further local processing is more efficient
Conclusions

• We extended standard CS results to fusion frames

• Using l_1/l_2 norms everything transfers almost as expected

• We exploit the rich structure of fusion frames

• Fusion coherence incorporates this structure

• Still to do: incorporate the structure in RIP

• A richer model for joint sparsity

• A model for vector based measurements