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Mitsubishi Electric Corporation e MU

Changes for the Better

Auomotive Equ.»ij'oment " Factory Automation Systems

o

Autonomous Driving & Collaborative Robots Observation Satellites
In-Vehicle Infotainment for Production Remote Sensing

Other Key Business Areas ($45B annual revenue)
Home (air conditioners)

Transportation (train equipment)
Building (elevators and escalators, surveillance, access control)

Public/energy systems (plant monitoring, power transmission/distribution)
Corporate R&D Centers: Japan, Europe (UK & France), USA (MERL)
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MERL Profile & Technology Areas e TS

©
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Natural Language Processing

Computer Vision
Visual Analysis

3D Reconstruction & Processing
Simulation & Learning

Speech & Audio
Speech Recognition
Audio Signal Processing

Data Analytics
Anomaly Detection
Predictive Modeling
Decision Optimization

Control & Dynamics
Control Algorithms
Nonlinear Dynamical Systems

Multi-Physical Systems
Electronic Devices
Modelling & Simulation

'

TV

Changes for the Better

One of the most academically-oriented and
open industrial research labs in the world

Engaged in mid/long-term research in areas
that would be beneficial to parent company

60+ researchers in Al, signal processing,
optimization and control, incl. 4 IEEE Fellows
- http://www.merl.com/people

- http://www.merl.com/research

We publish everything we do in leading
conferences and journals (~200 pubs/year)
- http://www.merl.com/publications

More than 25 years of innovation!


http://www.merl.com/people
http://www.merl.com/research
http://www.merl.com/publications

Computational Sensing @ MERL e MRS

Changes for the Better

Petros Boufounos Dehong Liu Hassan Mansour  Perry Wang Yanting Ma

Airflow Sensing )

| Flow-sensor
development:

= combined with fluid
56" v .| dynamical modeling
" and control to improve

Material Sensing

Defect within
wall clearly
visible.

Infrastructure
Monitoring

Realize benefits of
radar array for rapid =

infrastructure Current: i-see sensor | ) HVAC efficiency and
monitoring to monitor floor/wall ~ Target: dense 3D maps of \\so comfort
temperature temperature and airflow
MERL method
outperforms
linear methods Multi-Band Image Fusion

1-2 dB PSNR

. Learning-Based
improvement

Multispectral image
super resolution:
combing low quality
RGB, Near/Short
wave Infra-Red
images to improve
image quality and
remove haze and

clouds -

Linear Model Non-Linear Model
(Reference) (Proposed)

Original Object

Sparse reconstruction and EM modeling
Computationally efficient non-linear propagation
model. Estimation of object permittivity based on

reflected waves . . .
Conventional MERL ___ Djstributed Sensing

! % Coherent integration of
multiple sensors to improve
: SNR with large position errors

o
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Changes for the Better

THE BIG PICTURE
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Computational Sensing Reveolution e MU
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Changes for the Better

Conventional Sensing Pipeline

IR g e

Sensor designed to collect as pristine information as possible
(linear, high dynamic range, high precision, high sampling rate etc.)
Processing is simple because the data is very “clean” and well-measured

Comput Sensing

Goal: exploit mixing to simplify sensor or improve sensor specifications (e.g.,
sensor speed, A/D conversion rate, measured bandwidth/resolution)

Reconstruction methods can guide sensor development and vice versa
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Changes for the Better

Computational Sensing Principles Radar and Array Processing

Y1 (t) :xnps(t - 7-s,l,n)

a)))
031 A '&K\&&\\ \ <~
A\\\\\ 1 Yi’f :anSYfe_ijTs,l,n
! o . 05
05 ) 0
0 -05

(e) Orignal Scene (f) Backprojection (g) CoSaMP (h) Model Based
1 1

o o

depth, 15 elements

X = argmin ||y — Ax[|3 + AR(x)

Synthetic Aperture Radar Distributed Array Processing
: / | P —
B
oot |
|0 ol e [ |
e | |
W=l

Imaging resultof full data (square root of mag)

Azimuth (m)




Today e TSI

Changes for the Better

Gmputational Sensing Principles \ @dar and Array Processing \
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(Active) Array Processing Problem e MU

Changes for the Better
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Transmitters illuminate the scene
Reflectors reflect incident waves

Receivers receive the reflections

Can we localize/reconstruct/image
sources in the scene?
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SYSTEM MODELING
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Propagation Model e MRS

Changes for the Better

Reflectivity of scene point n (signal of interest): X,

Transmitter s | Scene point 1 Pulse transmitted by transmitter s (freq. domain): Py
@ M) : Si_gnal received by _receiver [ (freq. d(_)main): Y,

(e 3 Distance of transmitter s to scene point x: dgn

Receiver [ Distance of receiver / to scene point x: d,.
Speed of propagation: c

Time delay for distance d: dlc

Time delay from s to / through n: Ty 1,=(d,+ d, ) c

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

yi(t) =

Propagation
Delay

© MERL



System Model e MU

Changes for the Better

Reflectivity of scene point n (signal of interest): X,

Transmitter s _ Scene point 7 Pulse transmitted by transmitter s (freq. domain): Py
® M) Si_gnal received by _receiver [ (freq. dc_)main): Ry

(e Distance of transmitter s to scene point n: ds,

Receiver [ Distance of receiver [ to scene point n: d,.
Speed of propagation: c

Time delay for distance d: d/c

Time delay from s to [ through n: Ty 1,=(dy,+ d, e

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

Discretizing in Frequency and converting to matrix form:

i Yl,l Zs PsJe—jwﬂ's,l,l Zs Ps’le—jwﬂs,l,N 7
Yl,F Zs PS’Fe_ij‘Ts,l,l e Zs Ps,F@_ijTS’l’N T
. . . . X = .
y= Yl,f A = ZS Ps’fe_]-wf'f's,l,l S Zs Ps’fe—jwf‘rs,z,zv TN
—JwiTs,L,1 ... —Jw1Ts,L,N
YL’l Zs Pssle ) Zs PSyle ¢ U-}f = Lgf
[ Yir | [ 2o, Pape™ermort oo 3T Py peJUrTLN |
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System Model e MRS

Changes for the Better

Reflectivity of scene point n (signal of interest): X,

Transmitter s | Scene point 1 Pulse transmitted by transmitter s (freq. domain): Py
B M) : Si_gnal received by _receiver [ (freq. dc_)main): Ry

(e J Distance of transmitter s to scene point x: dgn

Receiver [ Distance of receiver / to scene point x: d,.
Speed of propagation: c

Time delay for distance d: dlc

Time delay from s to / through n: Ty 1,=(d,+ d, ) c

S transmitters, L receivers, N scene points (scene discretized), F transmitted frequencies

3 Sensing Scene

Matrix (unknown)

(determined by
system design)

Received data

© MERL



Scene Model
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Changes for the Better

y = AX

Received data

B ‘A :)\)@@k

X
»

0l

1
1 © . Reflector

oy . 0.5
Q. ,
0 -05
Transmitters
Receivers

© MERL

Sensing Scene
Matrix

Scene Reflectivity
(at every point in the scene)

Typical scenarios: very few reflectors in scene

Often reflectors are not permeable
(can’t see behind them)

Scene is sparse!

(i.e., mostly zeros)
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ACQUISITION AND RECOVERY
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Acquisition and Recovery e MRS

Changes for the Better

Transmitter s |~ Scene point n —— A- X
o M) % —_—

A

Receiver / 3 Received data Sensing Matrix Scene

(determined by (sparse)
pulsing method)

Problem 1 - Recovery: Given y, what is x?

(most of the discussion today)
= A~ 19
X = Yy

Problem 2 - Design: How to get a good A?

(just a bit on that today)

© MERL



Simple Computation: Least Squares Inversion e MRS

Changes for the Better

Transmitter s |~ Scene point n —— A_ X
o M) % —_—
A .

(e

J Received data Sensing Matrix Scene

(determined by (sparse)
pulsing method)

Receiver [

Problem 1 - Recovery: Given y, what is x?

N “‘
Least Squares Inversion: X — A 37

In fact two different approaches:

Least norm solution if underdetermined system: % = arg mln HXH2 S,t. X = Ay
X

)
|

Least squares fit if overdetermined system:

arg min ||y — Ax||

© MERL



Simple Computation: Matched Filter e MRS

Changes for the Better

Transmitter s |~ Scene point n —— A_ X
o M) % —_—

(e

Receiver / J Received data Sensing Matrix Scene

(determined by (sparse)
pulsing method)

Problem 1 - Recovery: Given y, what is x?

N “‘
Least Squares Inversion: X S A 3 4

AN sk
Matched Filter: x — A 3]

(a.k.a., backprojection,

delay and sum beamforming, etc.) Performs well in practice, as long as A is “well behaved”
(low sidelobes, no grating lobes, etc.)

Drawback: none of these methods take a model for x into account

(remember, scene is sparse!)
© MERL
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Sparse/Model Based Inversion o MR
hanges for the DBetter
Transmitter s |~ Scene point n A_
S EE))))) o - } (
( 3
Receiver / Received data Sensing Matrix Scene
(determined by (sparse)

pulsing method)

Problem 1 - Recovery: Given y, what is x?

General Inverse Problem Principles

Find X, such that y =~ AX and fits the model
A

A A
[ \ \ | \

X = argmin |y — Ax|[|5 + AR(x)

J (sparsity)

% = argmin|ly — Ax|3 + x|,

© MERL



Sparse/Model Based Inversion e MRS

Changes for the Better

Transmitter s |~ Scene point n —— A- X
o M) % —_—

A

Receiver [

3 Received data Sensing Matrix Scene
(determined by (sparse)
pulsing method)

Problem 1 - Recovery: Given y, what is x?

Sparse Recovery Problem

% = argmin [ly — Ax|3 + x|

General Idea: Find the sparsest signal that explains the data

Computation is a significant component!
We have many efficient ways to compute the solution, or approximations to it
(convex optimization, greedy approximations, fast first-order algorithms)

© MERL



Sensing and Pulsing e MRS

Changes for the Better

Transmitter s |~ Scene point n —— A_ X
o M) % —_—

(e

Receiver [

J Received data Sensing Matrix Scene
(determined by (sparse)
pulsing method)

Problem 2 - Design: How to get the best A?

Pulse Bandwidth < Depth resolution
(but higher bandwidth requires higher sampling rate)

Array Size (aperture) & Angle (spatial) resolution
(but larger array requires more elements)

More elements simultaneously transmitting = more interference
(randomize/code pulses to be able to separate them)

© MERL
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Computational Sensing Principles Radar and Array Processing
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Today e s

Changes for the Better

Radar and Array Processing
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Wave Propagation, Far-field Approximation

Source
Propagating waves are circular:
Same delay for same distance from source

Propagating " ..
waves N
Far field approximation
Sources located far relative to array size

Propagating waves become flat (planar)
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Array Design

Uniform Spacing

A

v

Array parameters

* Operating Frequency: 76-77GHz
(A/2=2mm)

* Aperture size: 20cm

* Array Elements: 30
(instead of ~100)

© MERL

Beampatter gain, dB
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Changes for the Better

Non-Uniform Spacing

o
d, d, /dl\/l—l

=1

>
0.20 m array /
T T T T T

il | |
‘ ‘ 1 | I I | i ‘
| || ——Randmized, 30 el.
‘ ‘ - Uniform, 30 el.

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8 1

u=cos0o



Radar Scene Model ol MTsUESH

Changes for the Better

28uey
:

Model
Enforcement
(Model-based
truncation)

Angle

< + -
\ y _ i
Scene (signal) model: @ - i
Front of objects is empty (zero) i
Rear of objects is invisible (zero) \ i
\J

© MERL



Example: mmWave Radar Simulation e MRS

Changes for the Better

* Operating Frequency: 76-77GHz

* Simulation in 2D-field (easier to visualize results)
— Assuming uniform linear array

 Compared three approaches
— Classical backprojection (beamforming)
— Standard Compressive Sensing (CoSaMP)
— Model-based Compressive Sensing

© MERL



Example: Array with uniform spacing e MRS

depth, 20 elements

o o
o 0 =

N

depth, 15 elements
o o
N (V)

© MERL

Changes for the Better

Model enforcement improves reconstruction
significantly, even with significant blur

(a) Orignal Scene (b) Backprojection

(c) Classical CS (d) Model Based

0

(e) Orignal Scene

(g) Classical CS (h) Model Based

0.8
0.6
0.4
0.2
0 1 -1 0 1
Y ( (
Backprojection (beamforming) Blur also confuses
exhibits significant blur, especially  Classical CS
as array elements are reduced algorithms



Example: Array with randomized spacing e MRS

Changes for the Better

(a) Orignal Scene (b) Backprojection (c) Classical CS (d) Model Based
1

0.8
0.6
04

0.2
-1

depth, 21 elements

0

-1 0

—

(e) Orignal Scene (h) Model Based

1
0.8
0.6
04

depth, 15 elements

0.2
-1

w
Standard CS performance
improves, but not perfect

© MERL



‘ MITSUBISHI

Tod ay AW ELECTRIC

Changes for the Better

Computational Sensing Principles Radar and Array Processing
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Today

N
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Kynthetic Aperture Radar
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Synthetic Aperture Radar (SAR) e MU

Changes for the Better

e | e |

‘Zﬁ mzﬁ Received Data: y %

. Ground Image: x

SAR Acquisition Linear Equation: y = A x

* SAR Acquisition follows linear model

* Acquisition function (A) determined by SAR parameters
— Pulse shape/rate
— Moving platform trajectory

* Image formation: given y determine x.

© MERL



SAR Modes: Coverage vs. Resolution e MU

Changes for the Better

Strip-map mode Sliding mode Spotlight mode
Beam not steered Beam Steered Beam Steered
Resolution
Coverage

© MERL



Spotlight Mode, Randomly Steerable e MU

Changes for the Better

Classical spotlight mode Randomly steerable mode

© MERL



Conventional array vs. random steerable array ,“ MR

Changes for the Better

True
reflectivity -

Imaging result of full data (square root of mag)

100
200
300
400 :
500
600
700
800
900

1000

200 400 600 800 1000

Conventional spotlight array Random steerable spotlight mode

39
© MERL



Reconstruction Results, Single Spot e MU

Changes for the Better

: Ghosting

Conventional §

spotlight mode @&

Conventional reconstruction, full data
Leakage
—from strong
Random scatterers
steerable array
Wavelet-sparsity reconstruction Proposed method (spatial sparsity)
40

© MERL



Can we do more? Sliding Mode Array (carss 2013) e MU

Changes for the Better

Conventional sliding mode: Randomized sliding mode
Beam sliding in area of interest Beam randomly steered
in area of interest.

© MERL



Simulation Results
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Changes for the Better

Phase Error

L4
-‘:ﬁ#;!lll.

¥

.“

26% reduction
in Phase Error
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Computational Sensing Principles Radar and Array Processing
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Today
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Changes for the Better

(e) Orignal Scene

o
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o
~
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depth, 15 elements
> ©
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(g) CoSaMP (h) Model Based
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Distributed Radar e MTSUBSH

Changes for the Better

* Several spatially distributed radar platforms coordinating
— Large aperture - High resolution
— Small cheap platforms - Inexpensive, fault tolerant, robust, low
maintenance...
* Main Challenges
— Clocks are difficult to synchronize
— Position of each platform not accurately known

1.5

9 I
1
E 0.5?,..00“
e= .
g O@ | e
'&q ~0.5}

-1 @.M i

-15 ' !
=1 0 1 2 3 4 5 6
Range (m)
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Problem 1: Imperfect Synchronization e MRS

Changes for the Better

* Main intuition: Timing shifts in the data can be modeled as a
convolution in time with a 1-sparse kernel modeling the time delay

_X__ = Zom * (A, X
@T)T>r Y (A x)
A |:|:

N e -
: Y’ ‘\\ |
@l“ ‘\ \\\,//\ .
SR
Y \\\ \\\\
) > YV *Zy = AX

© MERL



Problem 1: Imperfect Synchronization e MRS

Changes for the Better

* Main intuition: Timing shifts in the data can be modeled as a
convolution in time with a 1-sparse kernel modeling the time delay

oy ) } —X__ Ym = Zm ¥ (A X)

|
oy & ST D
I: \ J “\ | I:I:
6‘\ \ \‘\,//\ bee===
SRS
Y \\\ \\\\
- - zm
= | A, F||7|=0

© MERL



Computational Formulation e MRS

Changes for the Better

o - < Zm
Y / O [Am —F} . =0

SOV O,
|
(D‘\ L /< - * Scene is sparse, shifts are sparse
\ \ \
&) ‘\\ \\\ \\ * All-zeros happens to be a (trivial) solution
T \\\ . * However, delays positive and sum up to 1

4
[ ]

N Scene also (typically) positive, non-zero

M
minimize Ao ||IX|ly + Az Z lzmll, +
X’{Zm}%zl m=1
(A, -F 6 6 - o]lrx1 ro1l
A, ® -F o6 ... © Z1 0
Z9o .
Ay © © © ... —F|]|: 0
1y 0p Op Op -+ Op| LZM]  LYel|,
subjectto: x>0y, Zm > 0p , 1sz:1, Ym (11)

© MERL



Experimental Results

e 32 antennas split into 4 arrays.
* 9 GHz BW Differential Gaussian

pulse centered at 6 GHz.
* Timing error up to £1lns

© MERL

Azimuth (m)
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Experimental Results BT &'w ELECTRC
e 32 antennas split into 4 arrays. E 05 o qu¥oPX-
* 9 GHz BW Differential Gaussian g U
pulse centered at 6 GHz. | Ny
* Timing error up to £1lns . : . . . . :
Range (m)
Original Scene Timing Error Ignored

Azimuth (m)
Azimuth (m)

5.8 6 6.2 6.4 6.6 6.8 5.8 6 6.2 6.4 6.6 6.8

Range (m) Range (m)

Synchronized System Timing Error Corrected

0.7
0.6
0.5
0.4
0.3

0.2

Azimuth (m)

0.1

Azimuth (m)

0

-0.1

-0.2

-0.3
5.8 6 6.2 6.4 6.6 6.8 5.8 6 6.2 6.4 6.6 6.8

Range (m) Range (m)
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Experimental Results

© MERL
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Problem 2: Unknown Positions .““E"EE%‘%%'%“'
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* Main intuition: Unknown position shift of a transmitter-receiver
pair is equivalent to unknown shift of the image in space

Sparse image
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Problem 2: Unknown Positions ."“E"EE%‘%%'%“'
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* Main intuition: Unknown position shift of a transmitter-receiver
pair is equivalent to unknown shift of the image in space
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Sparse image Shift filters

______ I |
I Unknownl

True antenna
positions

_<
-
|
O O
/
]
|
/EI
¢
I_______D_______
|
L=

2D % convolution

I

© MERL



Computational Formulation e MRS

Vi = A (X *x h,,)

Data Sensing Scene Shift
Operator Kernel

* Problem of two unknowns
— Generally under-determined
— But we know shift kernels are sparse (1-sparse, in fact)
— The scene is also sparse
= We can still formulate it as a minimization

AN

%, By, =arg min > ([[ym — AGcs h)ll3 + ol ) + Al

x,h,,
m

s.t.17h,, =1

* Not a convex problem, harder to solve
— We alternate between solving for x and h,,
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Simulation Results

e 32 antennas split into 4 arrays.

* 9 GHz BW Differential Gaussian
pulse centered at 6 GHz.
* Average position error ~2A;

maximum error at 3.5A

Azimuth (m)

“Ran g(m)

Actual Scene

“Ran g(mi

P05|t|ons Known

‘ MITSUBISHI
AV N ELECTRIC

Changes for the Better

oxe’s
1_

=3 0.5”‘8)%

:C_' 0,

S O0f

E * Mg

L 05¢ i}

T

Range (m)

Position Error
Ilgnored

Azimuth (m)

“Ran 91m)

Measurement phase
Correction (classical)

Azimuth (m)

Range (m)

Position Error

Corrected (this talk)

________
.-

____________

True positive rate

09t ool
08 8dB |1 08
o —-10dB .
o> ] [OR N
s 15dB E
© 08F reritiiirenenneentt 20dB 4 © 06 ,
= > d
— P (]
‘@ 051 BO5F 4
o] =] (
[oR o y
@ 04 ©04F 4 -
2 =} P
= = 7,
= osl = osl i/
4
02r 02—,"
'l
011 otf
g |, -~
o . . . . . . . . . ol = = =
0 001 002 003 004 005 006 007 008 009 0.1 0

False positive rate

©Mm

0.01 002 003 004 005 006 007 OOB 009 0.1

False positive rate

‘
0 0.01
False positive rate

L L L L L L L L
0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1



Experimental Results e MRS
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Take-home Message e MU
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e Computation should have a symbiotic relationship with sensing

— Important to balance the trade-off between hardware complexity
and computation

— Be aware of complexity cost and use computation where it matters

* Good modeling of the system and the signal is key
— Linearity goes a long way!
— Signal models are your friends

* Inverse problem framework is very powerful and very generic
— Makes model enforcement easy

Questions/Comments?
petrosb@merl.com
o L http://boufounos.com
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