Compressive-Domain Interference Cancellation

Petros Boufounos
petrosb@merl.com

Mark Davenport,
Rich Baraniuk
{md,richb}@rice.edu
MOTIVATION AND OVERVIEW
Compressive Sensing Architecture

\[\mathbf{x} \xrightarrow{N} \text{measure} \quad \xrightarrow{M} \text{transmit/store} \]

\[\text{receive} \xrightarrow{M} \text{reconstruct} \xrightarrow{N} \hat{\mathbf{x}} \]

one row of \(\Phi \)
Measurement System

\[M \times 1 \]

measurements

\[\Phi \]

\[N \times 1 \]
sparse signal

\[K \]
nonzero entries
Restricted Isometry Property

\[M \times 1 \]
\[\text{measurements} \]
\[y = \Phi x \]
\[N \times 1 \]
\[\text{sparse signal} \]
\[M \times N \]
\[K \]
\[\text{nonzero entries} \]

\[K < M \ll N \]

\[\Phi \] has RIP of order \(2K \) with constant \(\epsilon \)

If there exists \(\epsilon \) s.t. for all \(2K \)-sparse \(x \):

\[(1 - \epsilon)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \epsilon)\|x\|_2^2 \]
Potential CS application

- Target Detection
- Target Tracking
- Signal Identification
- Signal Recovery

CS-based receiver
Target Detection

- Hypothesis Testing Problem
- Computationally simple
- Compressive domain solution ("smashed" filter)
Recover-then-filter Approach

CS Recovery (Greedy)

Interference Rejection

Target Detection

Optimization Problem (computationally expensive)

High sampling rate

Hypothesis testing problem (computationally cheap)
Compressive-domain Filtering

Desire: Maintain Signal Geometry (RIP)
COMPRESSIVE-DOMAIN FILTERING
CS Signal Acquisition

\[M \times 1 \]

measurements

\[y \]

\[\Phi \]

\[x \]

\[N \times 1 \]
sparse signal

\[K \times N \]
nonzero entries

\[M < K \ll N \]

Interference

Approach: Projection—interference in the nullspace
Case I: Known Interference Support

Interference Support: J
Interference Coefficients: K_J
Signal Coefficients: K_S
RIP order of Φ: $2K_S + K_J$

\[P = I - \Phi_J (\Phi_J^\dagger) \]

Projection to Range(Φ_J)
Projection Filter, Range(Φ_J) in Null(P)
RIP Conservation

If Φ has RIP of order $2K_S+K_J$ with constant ϵ, i.e., exists ϵ s.t. for all $(2K_S+K_J)$-sparse x:

$$(1 - \epsilon)\|x\|_2^2 \leq \|\Phi x\|_2^2 \leq (1 + \epsilon)\|x\|_2^2$$

then $P\Phi$ has RIP of order $2K_S$ and for all $2K_S$-sparse \tilde{x}:

$$\left(\frac{1-2\epsilon}{1-\epsilon}\right)\|\tilde{x}\|_2^2 \leq \|P\Phi_J c \tilde{x}\|_2^2 \leq (1 + \epsilon)\|\tilde{x}\|_2^2.$$
CS Signal Acquisition

\[y = \Phi x \]

- \(M \times 1 \) measurements
- \(N \times 1 \) sparse signal
- \(M \times N \) nonzero entries
- \(K \) nonzero entries

Signal of Interest

\[K < M \ll N \]
Case II: Known Signal Support

Known Signal Support: \(J \)
Interference Coefficients: \(K_J \)
Signal Coefficients: \(K_S \)
RIP order of \(\Phi \): \(K_S + 2K_J \)

\[
P = \Phi_J (\Phi_J^\dagger)
\]

Projection to Range(\(\Phi_J \))
(Rejecting everything else)
Interference Leakage Guarantee

If Φ has RIP of order $2K_S+K_J$ with constant ϵ, i.e., exists ϵ s.t. for all $(2K_S+K_J)$-sparse x:

$$(1 - \epsilon)\|x\|^2 \leq \|\Phi x\|^2 \leq (1 + \epsilon)\|x\|^2$$

Then the interference is attenuated at least by:

$$\|P\Phi_{J^c} \tilde{x}\|^2 \leq \frac{\epsilon^2(1 + \epsilon)}{(1 - \epsilon)^2}\|\tilde{x}\|^2$$
Remarks on $\Phi_J(\Phi_J^\dagger)$

- $\Phi_J(\Phi_J^\dagger)$ not the only possible choice
 - Any projection to $\text{Range}(\Phi_J)$ works
 - Convenient if access to columns of Φ_J not explicit
 - Efficient implementation

- P is rank/dimension reducing by K_J or $M-K_J$
 - $\text{Rank}(P\Phi)=M-K_J$ or K_J
 - Subsequent computation more efficient
EXPERIMENTS
Oracle Reconstruction

- Oracle aware of interference and signal support
- Reconstruction using the pseudoinverse on that support
- Rejection of the interference coefficients post-reconstruction
- Reconstruction error is the ℓ_2 error on the signal of interest
Recover-then-filter Reconstruction

- Reconstruction (CoSaMP) not aware of signal vs. interference
- Reconstruction recovers both signal and interference
- Rejection of the interference coefficients post-reconstruction
- Reconstruction error is the ℓ_2 error on the signal of interest
Interference-Aware Reconstruction

- Modified reconstruction (CoSaMP) aware of interference support
- Reconstruction recovers both signal and interference
- Rejection of the interference coefficients post-reconstruction
- Reconstruction error is the ℓ_2 error on the signal of interest
Filter-then-recover Reconstruction

- CS-domain filtering to reject interference
- Reconstruction (CoSaMP) only recovers the signal
- No need to reject coefficients post-reconstruction
- Reconstruction error is the ℓ_2 error on the signal of interest
Results—Error Performance

Recovered SNR (dB)

Oracle
Cancel–then–recover
Modified recovery
Recover–then–cancel

K_I/K_S
Results—Computation

Recovery Time (s) vs. K_I/K_S

- **Cancel-then-recover** (black dashed line with stars)
- **Modified recovery** (red dashed line with circles)
- **Recover-then-cancel** (blue solid line with plus signs)
Concluding Remarks

- Reconstruction is usually **not required** in applications.
- Steps towards **compressive-domain signal processing**.
- Compressive-domain processing can be **more efficient**.
- Filtering is an **essential** signal processing operation.
- Preliminary results. Much more on the way.
- Questions: petrosb@merl.com