
What’s the Frequency, Kenneth?:
Sublinear Fourier Sampling Off the Grid

Petros Boufounos1, Volkan Cevher2, Anna C. Gilbert3, Yi Li4, and Martin
J. Strauss5

1 Mitsubishi Electric Research Labs, 201 Broadway, Cambridge, MA 02139
petrosb@merl.com?

2 EPFL, Laboratory for Information and Inference Systems, Lausanne, Switzerland
volkan.cevher@epfl.ch??

3 Department of Mathematics, University of Michigan, Ann Arbor
annacg@umich.edu? ? ?

4 Department of EECS, University of Michigan, Ann Arbor leeyi@umich.edu
5 Departments of Mathematics and EECS, University of Michigan, Ann Arbor

martinjs@umich.edu†

Abstract. We design a sublinear Fourier sampling algorithm for a case
of sparse off-grid frequency recovery. These are signals with the form
f(t) =

Pk
j=1 aje

iωjt+ν̂, t ∈ ZZ; i.e., exponential polynomials with a noise
term. The frequencies {ωj} satisfy ωj ∈ [η, 2π−η] and mini6=j |ωi−ωj | ≥
η for some η > 0. We design a sublinear time randomized algorithm,
which takes O(k log k log(1/η)(log k + log(‖a‖1/‖ν‖1)) samples of f(t)
and runs in time proportional to number of samples, recovering {ωj} and
{aj} such that, with probability Ω(1), the approximation error satisfies
|ω′

j − ωj | ≤ η/k and |aj − a′j | ≤ ‖ν‖1/k for all j with |aj | ≥ ‖ν‖1/k.

1 Introduction

Many natural and man-made signals can be described as having a few degrees
of freedom relative to their size due to natural parameterizations or constraints;
examples include AM, FM, and other communication signals and per-flow traffic
measurements of the Internet. Sparse models capture the inherent structure of
such signals via concise linear representations: A signal y ∈ IRN has a sparse
representation as y = Ψx in a basis Ψ ∈ IRN×N when k � N coefficients x can
exactly represent the signal y. Sparse models guide the way we acquire signals
(e.g., sampling or sketching) and how we efficiently recover them from limited
observations (e.g., sublinear recovery algorithms).
? exclusively supported by Mitsubishi Electric Research Laboratories.

?? supported by a Rice Faculty Fellowship, MIRG-268398, ERC Future Proof, SNSF
200021-132620, and DARPA KeCoM program #11-DARPA-1055.

? ? ? supported in part by NSF DMS 0354600 and partially supported by DARPA ONR
N66001-06-1-2011

† supported in part by NSF DMS 0354600 and NSF DMS 0510203 and partially sup-
ported by DARPA ONR N66001-06-1-2011

2

There has been considerable effort to develop sublinear algorithms within the
theoretical computer science community for recovering signals with a few signif-
icant discrete Fourier components, beginning with Kushilevitz and Mansour [1],
including [2–4], and culminating in the recent work of Hassanieh, et al. [5, 6]. All
of these algorithms are predicated upon treating the vector y as periodic and
the discrete Fourier transform of a vector x being approximately k-sparse.

Unfortunately, these assumptions are too strong for many practical applica-
tions where the discrete Fourier transform coefficients are only approximation of
an underlying continuous Fourier transform. For example, if we want to measure
the approaching speed (the “doppler”) of an object via the Doppler effect, we
transmit a sinusoid wave eiω0t (where t is time in this example) and receive a
sinusoid wave whose frequency offset from ω0 depends on the unknown doppler,
v. Since v can be essentially any continuous value, so can be the received fre-
quency. If there are two or more speeding objects in view, the received signal is
of the form f(t) = a1eiω1t + a2eiω2t, where ω1/ω2 is not necessarily a rational
number, so that f(t) is not periodic. This practical and common example does
not directly fit the discrete Fourier transform setting of [1–6].

To illustrate why we cannot simply reduce the continuous problem to the
previous discrete Fourier sampling techniques, consider f(t) = a1eiω1t + a2eiω2t

and simply sample it on N equally-spaced points t. The Discrete Fourier Trans-
form (DFT) of these samples produces a set of N coefficients at corresponding
frequencies 2π`/N , ` = 0, . . . , N − 1, uniformly spaced in the interval [0, 2π].
It is also possible to compute the oversampled DFT, producing a larger set of
coefficients N ′ > N , also corresponding to frequencies 2π`/N ′, ` = 0, . . . , N ′−1,
uniformly spaced in [0, 2π]. In this setting, the existing DFT-based methods of-
ten fail to capture the true sparsity of the signal and may blow up the sparsity in
an unacceptable fashion. Indeed, even a 1-sparse original signal f(t) = eiω1t for,
say, ω1 = 5.3 · 2π/N , will lead to a discretized signal whose Fourier transform is
concentrated around 5 · 2π/N and 6 · 2π/N , but is significant in Ω(N) places.
This phenomenon arises even with an oversampled DFT, no matter how finely
we discretize the frequency grid; i.e., no matter how large N ′ is.

To this end, our approach lets ω range continuously while keeping t discrete.
In Fourier analysis on (locally compact abelian) groups, the variables t and
ω must be members of dual groups, which include the pairings ZZN ↔ ZZN ,
ZZ ↔ S1 (where S1 denotes a continuous circle, IR/ZZ), and IR ↔ IR. We take
t ∈ ZZ and ω ∈ S1. The generalization benefits over ZZN ↔ ZZN are as follows.

– In ZZN ↔ ZZN , the data {f(n)} are completely specified by N consecutive
samples; we can treat double-ended infinite sequences {f(n)}n∈ZZ provided∑

n∈ZZ |f(n)| < ∞.
– In ZZN ↔ ZZN , the frequencies ωj must lie on a discrete grid; we can treat

frequencies in the continuous space S1.

A concrete application of our approach (studied in the extended version of this
paper) is the bearing (or angular direction) estimation of sources transmitting at
fixed frequencies, a canonical array signal processing problem with applications

3

to radar, sonar, and remote sensing. Other applications also include the finite
rate of innovation problems [7].

The organization of the paper is as follows. In Sect. 2, we define our model
and problem formulation. In Sect. 3, we present our algorithm and its analysis.
An application of this result to bearing estimation problems can be found in the
full version of this paper.

2 Preliminaries

In this section, we define the problem of sublinear recovery of sparse off-grid
frequencies, set the stage notationally, and then detail our results.

2.1 The problem

We define a spectrally sparse function f with off-grid frequencies as a function
f : ZZ → C with k frequencies ω1, . . . , ωk ∈ S1, and we allow for noise ν in
the spectrum that is supported on a set Iν ⊂ S1. We fix a minimum frequency
resolution η and assume that {[ωj − η/2, ωj + η/2)}k

j=1 and [Iν − η/2, Iν + η/2)
are all mutually disjoint. That is, the frequencies are not on a fixed, discrete
grid but they are separated from each other and from the noise by a minimum
frequency resolution. In our analysis below, we assume that |ωj | > η without
loss of generality. Specifically, we assume f is of the form

f(t) =
k∑

j=1

ajeiωjt +
∫

Iν

ν(ω)eiωtdω, t ∈ IR,

with ν ∈ L1(Iν). Without loss of generality, we assume that aj 6= 0 for all j. 6

Our goal is to find all (aj , ωj) with

|aj | ≥
1
k

∫
Iν

|ν(ω)|dω (1)

making as few samples on ZZ as possible (and with the smallest support) from
f and for the shortest duration and to produce such a list in time comparable
to the number of samples. The number of samples and the size of the support
set of the samples should be proportional to a polynomial in k and log(1/η), the
number of desired frequencies and precision. We call the frequencies ωj whose
associated amplitude aj meet the threshold condition (1) significant.

6 Strictly speaking these functions are not well-defined as, in the current definition, f
is not in L1(ZZ) and does not have a mathematically well-defined Fourier transform
(without resorting to more sophisticated mathematical techniques, such as tempered
distributions). To be mathematically correct, we define f as above and then multiply
it by a Gaussian window of width η100. Call this mollified function f̃ . The spectrum
of f̃ is thus the convolution of bf with a Gaussian of width η−100. Up to the precision
factor η/k, the spectra of f̃ and f are indistinguishable. Henceforth, we consider f
with the understanding that f̃ is the well-defined version.

4

We observe that if we dilate the frequency domain S1 by a factor 1/d ∈ IR
(i.e., map ω to ω/d), we produce an equivalent sequence of samples f(t), at
regularly spaced real-valued points t = nd, n ∈ ZZ. While the points are indexed
by the integers, the values themselves t = nd are in IR. The dilation factor d
determines the “rate” at which we sample the underlying signal and the total
number of samples times the sampling rate is the duration over which we sample.
Both the rate and the total number of samples are resources for our algorithm.

2.2 Notation

Let Ω be a domain (which can be either continuous or discrete). Roughly speak-
ing, we call a function K : Ω → IR a filter if K is or approximates the charac-
teristic function χE of some set E ⊂ Ω, which will be called the pass region of
K. The resulting signal of applying filter K to signal f (viewed as a function on
Ω) is the pointwise product K · f .

Let Km be a kernel defined on S1 (identified with (−π, π]) that satisfies the
following properties:

– it is continuous on S1,
– its Fourier transform K̂m : ZZ → C has finite support: | supp K̂m| = O(m

α log 1
ε),

– it approximates χ[− π
m , π

m] (so Km is a filter): |Km(x)| ≤ ε for |x| ≥ π
m ,

|Km(x)− 1| ≤ ε for |x| ≤ (1− α) π
m and Km(x) ∈ [−ε, 1 + ε] elsewhere.

A Dolph-Chebyshev filter convolved with the characteristic function of an inter-
val meets these criteria. We call the region [−(1−α) π

m , (1−α) π
m] the plateau of

Km. The pass region of Km is [− π
m , π

m] and we define the transition region to be
the complement of plateau in the pass region. A similar kernel was used in [5]
and [6] with the only difference that their kernel was constructed by a Gaussian
kernel convolved with the characteristic function of an interval.

2.3 Main result

Theorem 1. There is a distribution D on a set of sampling points t ∈ IR
and an algorithm A such that for each perturbed exponential polynomial f(t) =∑k

j=1 ajeiωjt + ν̂(t), with constant probability, the algorithm returns a list Λ =
{(a′j , ω′j)}k

j=1 of coefficients and frequencies such that

1. For each |aj | ≥ ‖ν‖1/k there exists ω′j ∈ Λ such that

|ωj − ω′j | ≤
η

k
.

2. Let Λ0 =
{

ω′j ∈ Λ : ∃ωj0 such that
∣∣ωj0 − ω′j

∣∣ ≤ η
k and |aj0 | ≥

‖ν‖1
k

}
, then

for each ω′j ∈ Λ0 it holds that

|a′j − aj | ≤
‖ν‖1

k
.

5

3. For each ω′j ∈ Λ \ Λ0, it holds that

|a′j | ≤
‖ν‖1

k
.

The algorithm takes O(k log k log(1/η)(log k+log(‖a‖1/‖ν‖1))) samples and runs
in time proportional to number of samples. Furthermore, the size of the support
of D, i.e., the total duration of sampling, is O(k/η(log k + log(‖a‖1/‖ν‖1))).

3 Analysis

Almost all sublinear sparse recovery algorithms (including both the Fourier and
canonical basis) randomly hash frequencies or vector elements into buckets. Since
the representation of the vector is sparse (in either the Fourier or the canonical
basis), it is likely that each bucket contains exactly one coefficient and small
noise so that the position of the “heavy hitter” can be found and then its value
estimated. At a high level, our algorithm also follows this recipe. Some of these
sublinear algorithms are iterative (i.e., non-adpative hashing and estimation
of the difference between the original vector and significant frequencies found in
previous iterations) to use fewer samples or measurements or to refine inaccurate
estimates. In contrast, our algorithm is not iterative. We hash the range of the
frequencies into buckets and repeat sufficiently many times so that all frequencies
are isolated, then we locate the frequency and estimate its amplitude.

A main difference between the discrete and continuous Fourier sampling prob-
lems is that, in the continuous frequency setting, it is impossible to recover a
frequency exactly (from finite samples) so that one can subtract off recovered
signals at exact positions. Typically in the discrete setting, an iterative algo-
rithm uses a loop invariant either as in [8, 6] or in [3]. In the former case [8, 6],
the number of buckets decreases per round as the number of remaining heavy
hitters decreases. In the continuous case, however, the accuracy of the frequency
estimates produced by location procedure are dependent on the width the pass
region of the filter: the wider the pass region is, the more inaccurate the fre-
quency estimate is. Unless the algorithm not only estimates the coefficient at a
given frequency but also improves the frequency estimate, we must increase the
distance d between samples from O(k/η) to O(k2/η) to the achieve the same
accuracy for the final frequency estimate, i.e., we must increase the duration
over which samples are collected.

In the latter case [3], the number of buckets is kept the same at each round
while the energy of the residual signal drops, and there are typically log ‖a‖
rounds. In hashing, we need to bound the inaccuracy |K(h(ω))−K(h(ω′))|, where
ω′ is the recovered estimate of some real frequency ω, h the hash function and
K the kernel. We can achieve this with a kernel that does not have a significant
portion of its total energy outside of its pass region (i.e., a “non-leaking” kernel),
but it is not obvious how to achieve such an accurate estimate using a Dirichlet
or Fejér kernel which was used in [3]. Unfortunately, using a “non-leaking” kernel
like the one used in [5, 6] or the one used in this paper introduces a factor log ‖a‖
into the number of samples in order to decrease the noise in a bucket.

6

3.1 Recovery algorithm

See Algorithm 1 for detailed pseudo-code.

3.2 Analysis of algorithm

In this subsection, we provide a modular characterization of the algorithm.
Isolation. This portion of the analysis is similar to that of [6] but we emphasize
the continuous frequency setting.

Let Km be the kernel as described in Sec. 2 and set D = 2π/η. Define

H = {Km(ωd) = hd(ω)|d ∈ [D, 2D]}

to be a family of hash functions. We choose hd randomly from H by drawing d
from the interval [D, 2D] uniformly at random. Observe that the map ω 7→ ωd is
a random dilation of S1. Similar to [6] and [3], we shall consider m-translations
of Km, denoted by {K(j)

m }m−1
j=0 , where K

(j)
m (x) = Km

(
x + 2πj

m

)
(x ∈ S1), so that

their pass regions cover S1. The pass regions will be referred to as buckets and
the pass region of K

(j)
m as j-th bucket. For convenience we shall also call the

plateau of K
(j)
m the plateau of the j-th bucket. It is clear that each frequency ω,

under the random dilation ω 7→ ωd, will land in some bucket with index b(ω, d).
Similar to the hashing in [6], our hashing scheme guarantees that

– (small collision) Suppose that |ω−ω′| ≥ η then Pr{b(ω, d) = b(ω′, d)} ≤ c/m
for some absolute constant c > 0.

– (good plateau landing) Suppose that ω ≥ η and let 0 < α < 1/2 be as given
in the definition of Km, then ω lands in the plateau of the bucket with index
b(ω, d) with probability ≥ (1− α)(1− 1/m).

If a bucket contains exactly one frequency ωj0 , we say that ωj0 is isolated. Fur-
thermore, if ωj0 lands in the plateau of the bucket, we say that ωj0 is well-isolated.
Notice that when ωj0 is isolated, it holds that |hd(ωj)| ≤ ε for all j 6= j0.

The next lemma, an imitation of Lemma 3.1 in [3], allows us to bound the
inaccuracy of its estimate in terms of the noise ‖ν‖1.
Lemma 1. Suppose that ξ is a random variable on [D, 2D] such that |ξ| ≤ π/m.
Let ω ≥ η. Then Ed[|Km(ωd + ξ)|] ≤ c/m for some absolute constant c > 0.

Now we are ready to show that our algorithm isolates frequencies.
Fix j0 and choose m = Ω(k). The hashing guarantees that ωj0 is well-isolated

with probability Ω(1) by taking a union bound. Also, it follows immediately from
Lemma 1 that the expected contribution of ν to the bucket is at most c‖ν‖1/m.
Therefore we conclude by Markov’s inequality that

Lemma 2. Conditioned on ωj0 being well-isolated under hd ∈ H, w.p. Ω(1),∣∣∣∣∣∣
∑
j 6=j0

ajhd(ωj) +
∫

Iν

ν(ω)hd(ω)dω

∣∣∣∣∣∣ ≤ C1ε‖a‖1 +
C2

m
‖ν‖1

for some constants C1, C2 that depend on the failure probability.

7

Algorithm 1 The overall recovery algorithm
1: function Main
2: y ← signal samples
3: L← Identify(y)
4: Λ← Estimate(L)
5: return

P
ω∈Λ aωeiωt

6: end function

1: function Identify(y)
2: L← ∅
3: for t← 1 to Θ(log m) do
4: Choose a random d as described
5: Collect zst, the sample taking at time point with index (s, t)
6: bi ← 0 for all i = 0, . . . , m− 1
7: for r ← 1 to dlog2(1/η)e do
8: Compute {u`}m−1

`=0 and {v`}m−1
`=0 according to Remark 1

where u` =
P

j ajKm

`
ωjd− 2π`

m

´
Kn

“
ωjd

2r − 2π
2rm

`− 2b`π
2r

”
and v` =

P
j ajKm

`
ωjd− 2π`

m

´
Kn

“
ωjd

2r − 2π
2rm

`− 2b`π
2r − π

”
9: for `← 0 to m− 1 do

10: if |v`| > |u`| then
11: br ← br + 2r−1

12: end if
13: end for
14: end for
15: for `← 0 to m− 1 do
16: L← L ∪ { 2π`

md
+ 2b`π

d
}

17: end for
18: end for
19: return L
20: end function

1: function Estimate(L)
2: Choose hash families H1 and H2 as described.
3: for r ← 1 to Θ(log k) do
4: for each ω ∈ L do
5: a

(r)
ω ← measurement w.r.t. H1

6: b
(r)
ω ← measurement w.r.t. H2

7: end for
8: end for
9: for each ω ∈ L do

10: aω ← mediant a
(r)
ω

11: bω ← mediant b
(r)
ω

12: end for
13: L′ ← {x ∈ L : |bω| ≥ |aω|/2}.
14: Λ← {(ω, aω) : ω ∈ L′}.
15: Cluster Λ = {(ω, aω)} by x and retain only one element in the cluster.
16: Retain top k ones (w.r.t. aω) in Λ
17: return Λ
18: end function

8

Bit Testing. The isolation precedure above reduces the problem to the fol-
lowing: The parameter d is known, and exactly one of {ωjd}k

j=1, say ωj0d, be-
longs to

⋃N−1
n=0 [2nπ − δ, 2nπ + δ] for some small δ and (large) N . Suppose that

ωj0d ∈ [2sπ− δ, 2sπ + δ]. We shall find s and thus recover ωj0 . Assume that ωj0

is significant, i.e., aj0 satisfies (1).
We recover s from the least significant bit to the most significant bit, as in

[3]. Assume we have already recovered the lowest r bits of s, and by translation,
the lowest r bits of s are 0s. We shall now find the (r + 1)-st lowest bit.

Let Kn (n is a constant, possibly n = 3) be another kernel with parameter
ε′. The following lemma shows that Line 6–14 of Identify gives the correct s.

Lemma 3. Suppose that the lowest r bits of s are 0, let G1 = Km(x)Kn

(
x
2r

)
,

G2 = Km(x)Kn

(
x
2r − π

)
and u be the sample taken using G1 and v using G2,

then |u| > |v| if s ≡ 0 (mod 2r) and |u| < |v| if s ≡ 2r (mod 2r+1), provided
that m = Ω(k) and ε ≤ ‖ν‖1/(m‖a‖1).

Proof. We leverage the isolation discussion. By Lemma 2, when s ≡ 0 (mod 2r),

|u| ≥ (1− ε)(1− ε′)|aj0 | − (1 + ε′)
(

C1ε‖a‖1 −
C2

m
‖ν‖1

)
. (2)

and when s ≡ 2r−1 (mod 2r),

|u| ≤ (1 + ε)ε′|aj0 |+ (1 + ε′)
(

C1ε‖a‖1 +
C2

m
‖ν‖1

)
. (3)

Similar bounds hold for |v|. Thus it suffices to choose m ≥ 2(1+ε′)(C1+C2)
1−ε−2ε′ k. ut

Repeat this process until r = log2(πD) = O(log(π/η)) to recover all bits of s. At
each iteration step the number of samples needed is O(| supp Ĝ1|+ | supp Ĝ2|) =
O(| supp K̂m| · | supp K̂n|) = O(k log 1

ε), so the total number of samples used in
a single execution of Line 8 of Identify is O(k log 1

ε log 1
η).

The precision of ωj0d will be δ = π/m and thus the precision of ωj0 will be
δ/d ≤ π/(mD) = η/m. In summary, the hashing process guarantees that

Lemma 4. With probability Ω(1), Identify returns a list L such that for each
ωj with aj satisfying (1), there exists ω′ ∈ L such that |ω′ − ωj | ≤ η/m.

Remark 1. Notice that σ(Km) ⊆ [−M,M]∩ZZ for integer M = O(k
α log 1

ε). We
shall show that, similar to [3], despite Line 6–14 of Identify (for m translations
altogether) requires mr numbers, each of which is a sum of O(M) terms, this
process can be done in O((M + m log m)r) time instead of O(Mmr) time.

Suppose that at step r, the translation that shifts the lowest bits of sj to 0
is bj (0 ≤ j ≤ m− 1). In Line 8 of Identify, each uj or vj has the form

Θ(n)∑
s=−Θ(n)

e−2πi(bj+
j
m) s

2r

M∑
t=−M

e−2πi jt
m wstzst, j = 0, . . . ,m− 1,

9

where zst is the sample at time with index (s, t) and the associated weight is
wst. Notice that the inner sum can be rewritten as

m∑
`=0

e−2πi j`
m

∑
t∈(mZZ+{`})∩[−M,M]

wstzst,

which can be done in O(M + m log m) time using FFT. The outer sum has only
constantly many terms. Hence Line 8 of Identify takes O(M +m log m) times.
There are r steps, so the total time complexity is O((M + m log m)r).

Amplitude Estimation. The isolation procedure generates a list L of can-
didate frequencies. Like [6], we estimate the amplitude at each position in L
by hasing it into buckets using the same kernel but with possibly different pa-
rameters. We shall show how to extract good estimates and eliminate unreliable
estimates among |L| estimates.

The following lemma states that if a frequency candidate is near a true fre-
quency then they fall in the same bucket with a good probability and if a fre-
quency candidate is adequately away from a true frequency then they fall in
different buckets with a good probability.

Lemma 5. Let D = Θ(1/η) and δ > 0. Choose d uniformly at random from
[θ1D, θ2D].

1. if |ω−ω′| ≤ β1δ/D ≤ η then Pr {b(ω′, d) = b(ω, d)} ≥ 1− β1θ2. Thus except
with probability ≤ β1θ2 + α it holds that ω falls in the same bucket as ω′;

2. if |ω − ω′| ≥ β2δ/D then Pr {b(ω′, d) = b(ω, d)} ≤ 1/(β2(θ2 − θ1)) + cδD for
some universal constant c > 0.

Choose parameters 0 < β1 < β2, 0 < θ1 < θ2 such that β1θ2 + α < 1/3 and
1/(β2(θ2 − θ1)) < 1/3. Let D = Cπ/η. Define a hash family

H = {Km(ωd) = hd(ω)|d ∈ [θ1D, θ2D]}.

As a direct corollary of Lemma 5 we have

Lemma 6. Let ω′ ≥ η and j0 = arg minj |ω′ − ωj |. Obtain a measurement aω′

w.r.t. hd ∈ H.

1. If |ω′ − ωj0 | ≤ β1Cη/m, with probability Ω(1), it holds that |aω′ − aj0 | ≤
ε‖a‖1 + c′‖ν‖1/m for some c′ > 0 dependent on the failure probability;

2. If |ω′ − ωj0 | ≥ β2Cη/m, with probability Ω(1), it holds that |aω′ | ≤ ε‖a‖1 +
c′‖ν‖1/m for some c′ > 0 dependent on the failure probability.

Let ∆ = ε‖a‖1 + c′‖ν‖1/m, where c′ is a constant dependent on the failure
probability guaranteed in the lemma.

Take different C1 > C2 (and thus different D1 and D2) such that β1C2 ≥ 1
and that C2β2 ≤ C1β1. Define hash families Hi (i = 1, 2) as

Hi = {Km(ωd) = hd(ω)|d ∈ [θ1Di, θ2Di]}, i = 1, 2.

It then follows that

10

Lemma 7. Upon termination of execution of line 13 in Estimate, with prob-
ability Ω(1), for each ω′ ∈ L′ let j0 = arg minj |ω′ − ωj | it holds that

1. If |ω′ − ωj0 | ≤ β1C1η/m, then |aω′ − aj0 | ≤ ∆;
2. If |ω′ − ωj0 | ≥ β2C1η/m, then |aω′ | ≤ ∆
3. If β1C1η/m ≤ |ω′ − ωj0 | ≤ β2C1η/m, then |aω′ | ≤ 2∆.

Loosely speaking, Lemma 7 guarantees a multiplicative gap between the ampli-
tude estimates for the “good” estimates of significant frequencies and the am-
plitudes estimates for all other frequency estimates. Next, we merge estimates
of the same true source utilizing the gap as follows. In increasing order, for each
ω′ ∈ L′ with amplitude estimate aω′ , find

I(ω′) =
{

ω ∈ L′ : ω′ ≤ ω ≤ ω′ +
C1β1η

m
and

2
γ − 1

|aω′ | < |aω| <
γ − 1

2
|aω′ |

}
,

where γ > 3 is a constant to be determined later.
Choose an arbitary element from I as the representative of all elements in I

and add it to Λ. Continue this process from the next ω′ ∈ L that is larger than
all elements in I. Retain the top k items of Λ.

Lemma 8. Suppose that Estimate is called with argument L. With probability
Ω(1), it produces a list Λ such that

1. For each j with |aj | ≥ γ∆ for some γ > 2 +
√

5, if there exists ω′ ∈ L such
that |ω′−ωj | ≤ π/m, then there exists (ω′′, aω′′) ∈ Λ (we say that ω′′ ∈ Λ is
paired) such that |ω′′ − ωj | ≤ C1β1η/m and |aω′′ − aj | ≤ ∆.

2. For each unpaired ω ∈ Λ it holds that |aω| ≤ 2∆.

Proof. In case (1), for all ω ∈ L′ such that |ω − ωj | ≤ C1β1η/m it holds that
|aω| ≥ (γ−1)∆ while for other ω it holds that |aω| ≤ 2∆. There is a multiplicative
gap so the merging process does not mix frequencies that are close to and far
away from a true source. It is easy to verify that ω ∈ L′ upon termination of
line 13 since C2β1 ≥ 1. The rest is obvious. ut

Our main result is now ready.

Proof (of Theorem 1). We show that Main returns the claimed result with
probability Ω(1). Choose ε in the estimation procedure to be ε = ‖ν‖1/(2γk‖a‖1)
and m ≥ γc′k, then ∆ ≤ ‖ν‖1/(γk) and thus whenever |aj | satisfies (1) it holds
that |aj | ≥ γ∆. Combining Lemma 4 and Lemma 8 completes the proof. ut

Number of Samples. There are O(log k) repetitions in isolation and each takes
O(k log 1

ε log 1
η) samples, hence the isolation procedure takes O(k log k log 1

ε log 1
η)

samples in total.
The input of Estimate is a list L of size |L| = O(m log m) = O(k log k). Use

the same trick as in isolation, it takes O(M) = O(k log(1/ε)) samples for each of
O(log k) repetitions. Hence the estimation takes O(k log k log 1

ε log 1
η) samples.

The total number of samples is therefore

O

(
k log k log

1
ε

log
1
η

)
= O

(
k log k

(
log

‖a‖1
‖ν‖1

+ log k

)
log

1
η

)
.

11

Run time. It follows from Remark 1 that each isolation repetition takes O((M+
m log m)r) = O(k log k

ε log 1
η) time. There are O(log m) = O(log k) repetitions

so the total time for isolation is O(k log k log k
ε log 1

η).
The input of Estimate is a list L of size |L| = O(k log k). Use the same trick

as in isolation, it takes O(M +m log m+ |L|) to obtain values for all buckets and
compute a

(s)
ω and b

(s)
ω for all ω ∈ L and each s. Hence line 3–8 of Estimate takes

time O((M + m log m + |L|) log k) = O(k log k log(k/ε)) time. Thus estimation
takes time O(k log k log(k/ε)) + |L| log k + |L| log |L|) = O(k log k log(k/ε)).

The total running time is domimated by that of isolation, which is propor-
tional to the number of samples taken.

Output Evaluation Metric. Since we do not expect to recover the frequencies
exactly, the typical approximation error of the form∥∥∥∥∥∥

∑
j

ajeiωjt − a′je
iω′

jt + ν(t)

∥∥∥∥∥∥
p

contains both the amplitude approximation error ‖a−a′‖ and a term of the form∑
|aj ||ωj − ω′j |, rather than the more usual bound in terms of the noise alone

‖ν‖p in the discrete case. Given bounds on both the amplitudes |aj − a′j | and
the frequencies |ωj − ω′j |, it is possible to compute the two terms in the error.
This is standard in the literature of polynomial-time algorithms to recover real
frequencies (e.g., [9], with which our result is comparable).

4 Conclusion

In this paper, we define a mathematically rigorous and practical signal model for
sampling sparse Fourier signals with continuously placed frequencies and devise
a sublinear time algorithm for recovering such signals. There are a number of
technical difficulties in this model with directly applying the discrete sublinear
Fourier sampling techniques, both algorithmic and mathematical. In particular,
several direct techniques incur the penalty of extra measurements. We do not
know if these additional measurements are necessary, if they are inherent in the
model. Furthermore, unlike the discrete case, the “duration” of the sampling or
the extent of the samples is a resource for which we have no lower bounds.

Acknowledgements. The authors would like to thank an anonymous reviewer
for a suggestion that improves the running time.

References

1. Kushilevitz, E., Mansour, Y.: Learning decision trees using the Fourier spectrum.
In: STOC. (1991) 455–464

12

2. Gilbert, A., Guha, S., Indyk, P., Muthukrishnan, M., Strauss, M.: Near-optimal
sparse fourier representations via sampling. In: STOC. (2002) 152–161

3. Gilbert, A.C., Muthukrishnan, S., Strauss, M.: Improved time bounds for near-
optimal sparse Fourier representations. In: Proceedings of Wavelets XI conference.
(2005)

4. Iwen, M.: Combinatorial sublinear-time Fourier algorithms. Foundations of Com-
putational Mathematics 10(3) (2009) 303–338

5. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Simple and practical algorithm for
sparse Fourier transform. In: SODA. (2012) 1183–1194

6. Hassanieh, H., Indyk, P., Katabi, D., Price, E.: Nearly optimal sparse Fourier
transform. In: STOC. (2012) 563–578

7. Vetterli, M., Marziliano, P., Blu, T.: Sampling signals with finite rate of innovation.
Signal Processing, IEEE Transactions on 50(6) (2002) 1417–1428

8. Gilbert, A., Li, Y., Porat, E., Strauss, M.: Approximate sparse recovery: Optimizing
time and measurements. SIAM J. Comput. 41(2) (2012) 436–453

9. Peter, T., Potts, D., Tasche, M.: Nonlinear approximation by sums of exponentials
and translates. SIAM J. Sci. Comput. 33(4) (2011) 1920–1947

