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Abstract Quantization is an essential step in digitizing signals, and, therefore, an in-
dispensable component of any modern acquisition system. This chapter explores the
interaction of quantization and compressive sensing and examines practical quanti-
zation strategies for compressive acquisition systems. Specifically, we first provide a
brief overview of quantization and examine fundamental performance bounds appli-
cable to any quantization approach. Next, we consider several forms of scalar quan-
tizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds
and fundamental analysis, as well as practical quantizer designs and reconstruction
algorithms that account for quantization. Furthermore, we provide an overview of
Sigma-Delta (Σ∆ ) quantization in the compressed sensing context, and also dis-
cuss implementation issues, recovery algorithms and performance bounds. As we
demonstrate, proper accounting for quantization and careful quantizer design has
significant impact in the performance of a compressive acquisition system.

Petros T. Boufounos
Mitsubishi Electric Research Laboratories, 201 Broadway, Cambridge, MA, USA, e-mail:
petrosb@merl.com

Laurent Jacques
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1 Introduction

In order to store and manipulate signals using modern devices, it is necessary to
digitize them. This involves two steps: sampling (or measurement) and quantiza-
tion. The compressed sensing theory and practice described in the remainder of this
book provides a novel understanding of the measurement process, enabling new
technology and approaches to reduce the sampling burden. This chapter explores
the very interesting interaction of compressed sensing with quantization.

Sampling maps a signal to a set of coefficients, typically using linear measure-
ments. This map can often be designed to be lossless, i.e., to perfectly represent
all signals in a certain class, as well as robust to noise and signal modeling errors.
The Nyquist theorem, as well as more recent compressive sampling theorems are
examples of such sampling approaches [25, 9, 75].

The guarantees in sampling theorems are typically stated in terms of the critical
measurement rate, i.e., the number of measurements necessary to perfectly repre-
sent signals in a given class. Oversampling, compared to that minimum rate, typ-
ically provides robustness to errors in the representation, noise in the acquisition,
and mismatches in signal models. The latter is especially important in compressive
sensing systems as they provide perfect reconstruction guarantees for exactly sparse
signals; in practice, the acquired signal is almost never exactly sparse.

Quantization, on the other hand, is the process of mapping the representation
coefficients—which potentially belong to an uncountably infinite set—to elements
in a finite set, and representing them using a finite number of bits. Due to the many-
to-one nature of such a map, the quantized representation is in general lossy, i.e.,
distorts the representation and, therefore, the signal. This distortion occurs even if
the measurement process is lossless.

The interaction of quantization with sampling introduces interesting trade-offs in
the acquisition process. A system designed to sample signals at (or slightly above)
the critical rate may be less robust to errors introduced by quantization. Conse-
quently, it requires a sophisticated quantizer design that ensures very small quanti-
zation errors. On the other hand, a simpler quantizer architecture (e.g., with fewer
bits per measurement) could introduce significant error to the representation and
require some oversampling to compensate. Practical systems designs navigate this
trade-off, for example, according to the complexity of the corresponding hardware.

Compressive acquisition systems amplify the importance of the trade-off be-
tween quantizer complexity and oversampling. The sampling rate is significantly
reduced in such systems, at the expense of increased sensitivity to noise and signal
model mismatch. Thus, loss of information due to quantization can be detrimental,
especially when not properly handled. One may revert to oversampling here as well,
however the incoherent and often randomized nature of compressive measurements
poses challenges. Thus, powerful oversampling based quantization approaches, such
as Sigma-Delta quantization can be applied, but only after careful consideration.

Nevertheless, the sparse signal models and the computational methods developed
for compressed sensing can alleviate a number of performance bottlenecks due to
quantization in conventional systems. Using computational approaches originating
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in frame theory and oversampling, it is possible to significantly reduce the distortion
due to quantization, to significantly improve the performance due to saturation, and
to enable reconstruction from measurements quantized as coarsely as 1 bit. The
theory and practice for such methods are described in Sec. 3.

It might seem counter-intuitive that compressed sensing attempts to remove sam-
pling redundancy, yet successful reconstruction approaches employ tools developed
for oversampled representations. In fact there is a strong connection between com-
pressed sensing and oversampling, which we explore in various points in this chap-
ter. Furthermore, with sufficient care, this connection can be exposed and exploited
to implement Sigma-Delta quantization in CS-based acquisition systems, and sig-
nificantly improve performance over scalar quantization. The details are discussed
in Sec. 4.

The next section presents general principles of quantization, including a brief
background on vector, scalar, and Sigma-Delta quantization for general acquisition
systems. It is not an exhaustive survey of the topic. For this we refer the reader
to [39, 32, 77]. Instead, it serves to establish notation and as quick reference for
the subsequent discussion. Sec. 3 and Sec. 4 examine the interaction of compressive
sensing and quantization in significant detail. Sec. 5 concludes with some discussion
of the literature, promising directions and open problems.

Notation: In addition to the notational conventions defined in Chapter 1, this chapter
also uses the following general notations. The logarithm in base a > 0 is noted loga
and whenever the base is not specified, log refers to the natural logarithm. Note that
in some cases, such as asymptotic results, the logarithm base is not important. This
chapter also uses the following non-asymptotic orderings: For two functions f and g,
we write f . g if there exists a constant C > 0 independent of the function arguments
such that f ≤Cg, with a similar definition for f & g. Moreover, f � g if we have both
f . g and f & g. Occasionally, we also rely on the well-established big-O and big-
Ω asymptotic notation to concisely explain asymptotic behavior when necessary.
More specific notation is defined at first occurrence.

2 Fundamentals of Quantization

For the purposes of this section, a quantizer operates on signals x, viewed as vectors
in a bounded set V ⊂Rn. The goal of a quantizer Q(·) is to represent those signals as
accurately as possible using a rate of R bits, i.e., using a quantization point q = Q(x)
chosen from a set of 2R possible ones often referred to as codebook. Of course,
when V contains an infinite number of signals, signals will be distorted through this
representation.

In this section, we first define common quantization performance metrics and
determine fundamental bounds on the performance of a quantizer. Then, in prepara-
tion for the next sections, we examine common approaches to quantization, namely
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scalar and Sigma-Delta quantization, which are very useful in compressive sensing
applications.

2.1 Quantization Performance Bounds

To measure the accuracy of the quantizer we consider the distortion, i.e., the `2
distance of a quantization point from its original signal ‖x−Q(x)‖2. The overall
performance of the quantizer is typically evaluated either using the average distor-
tion over all the signals—often computed using a probability measure on the signal
space V —or using the worst case distortion over all signals in V . In this chapter, in
the spirit of most of the compressed sensing literature, we quantify the performance
of the quantizer using the worst case distortion on any signal, i.e.,

ε = sup
x∈V
‖x−Q(x)‖2. (1)

This choice enables very strong guarantees, irrespective of the accuracy of any prob-
abilistic assumption on the signal space.

A lower bound on the distortion of any quantizer can be derived by constructing
a covering of the set V . A covering of radius r is a set of points q such that each
element in V has distance at most r from its closest point in the covering. If we can
construct a covering using P points, then we can also define a quantizer that uses
R = dlog2 Pe bits and has worst case distortion ε = r as each signal is quantized to
the closest point in the covering.

To determine a lower bound for the number of points in such a covering, we
consider balls of radius r centered at q, defined as

Br(q) = {x ∈ Rn|‖q− x‖2 ≤ r} . (2)

Since each signal in V is at most r away from some point in the covering, if we
place a ball of radius r at the center of each point of the covering, then the union
of those balls covers V . Thus, the total volume of the balls should be at least as
large as the volume of the set, denoted vol(V ). Since the volume of a ball of radius
r in n dimensions is vol(Br(q)) = rnπn/2/Γ (1+ n/2), where Γ (·) is the Gamma
function, the best possible error given the rate R can be derived using

vol(V )≤ πn/2

Γ (1+ n
2 )

2R rn⇒ r & 2−
R
n . (3)

In other words, the worst-case error associated with an optimal quantizer can, at
best, decay exponentially as the bit rate increases. Moreover, the decay rate depend-
ing on the ambient dimension of the signal. In short,

ε & 2−
R
n . (4)
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The smallest achievable worst case distortion for a set is also known as the (R+1)-
dyadic entropy number of the set, whereas the number of bits necessary to achieve
a covering with worst-case distortion equal to ε is known as the Kolmogorov ε-
entropy or metric entropy of the set.

For the models commonly assumed in compressive sensing, these quantities are
not straightforward to calculate and depend on the sparsity model assumed. For
example, compressible signals are commonly modeled as being drawn from a unit
`p ball, where 0 < p < 1 (cf. Chapter 1 for a discussion on compressibility). In this
case, the worst case distortion is bounded by

ε &


1 if 1≤ R≤ log2 n( 1

R log2(
n
R +1)

) 1
p− 1

2 if log2 n≤ R≤ n

2−
R
n n

1
2− 1

p if R≥ n,

(5)

where the constant implicit in our nation is independent of R and n [88, 36, 64, 24].
In the case of exactly k-sparse signals, the volume of the union of subspaces

they occupy has measure zero in the n-dimensional ambient space. However, by
considering the

(n
k

)
k-dimensional subspaces and coverings of their unit balls, a

lower bound on the error can be derived [18], namely

ε &
2−

R
k n

k
. (6)

Note that this lower bound can be achieved in principle using standard transform
coding (TC), i.e., by first representing the signal using its sparsity basis, using
log2

(n
k

)
. k log2(n/k) bits to represent the support of the non-zero coefficients and

using the remaining bits to represent the signal in the k-dimensional subspace at its
Kolmogorov entropy

εTC . 2−
R−k log2(n/k)

k =
2−

R
k n

k
. (7)

Unfortunately, compressive sensing systems do not have direct access to the sparse
vectors. They can only access the measurements, y = Ax, which must be quantized
upon acquisition—in practice using analog circuitry. Thus, transform coding is not
possible. Instead, we must devise simple quantization algorithms that act directly on
the measurements in such a way that permits accurate reconstruction.

2.2 Scalar Quantization

The simplest approach to quantization is known as scalar quantization and often
referred to as pulse code modulation (PCM), or memoryless scalar quantization
(MSQ). Scalar quantization directly quantizes each measurement of the signal, with-
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Fig. 1 A finite uniform scalar quantizer and the uniform grid it generates in 2 and 3 dimensions

out taking other measurements into account. In other words a 1-dimensional, i.e.,
scalar, quantizer is applied separately to each measurement of the signal.

2.2.1 Measurement and Scalar Quantization

A scalar quantizer can be defined using a set of levels, Q = {li ∈R : l j < l j+1}, com-
prising the quantization codebook, and a set of thresholds T = {ti ∈ R : t j < t j+1},
implicitly defining the quantization intervals C j = [t j, t j+1). Assuming no measure-
ment noise, the quantizer is applied element-wise to the measurement coefficients,
y = Ax, to produce the quantized measurements q = Q(y), qi = Q(yi). Using a rate
of B bits per coefficient, i.e., R = mB total bits, the quantizer represents L = 2B total
levels per coefficient. A scalar value yi quantizes to the quantization level corre-
sponding to the quantization interval in which the coefficient lies.

Q(yi) = l j ⇔ yi ∈ C j. (8)

A scalar quantizer is designed by specifying the quantization levels and the cor-
responding thresholds. Given a source signal with measurements modeled as a con-
tinuous random variable X , a (distortion) optimal scalar quantizer minimizes the
error

E|X−Q(X)|2. (9)

Such an optimal quantizer necessarily satisfies the Lloyd-Max conditions [71, 74]

l j = E
{

X |X ∈ C j
}
, t j =

1
2 (l j + l j+1), (10)

which define a fixed point equation for levels and thresholds and the corresponding
fixed-point iteration—known as the Lloyd-Max algorithm—to compute them.

Alternatively, a simpler design approach is the uniform scalar quantizer, which
often performs almost as well as an optimal scalar quantizer design. It is signif-
icantly less complex and can be shown to approach optimality as the bit-rate in-
creases [39]. The thresholds of a uniform scalar quantizer are defined to be equi-
spaced, i.e., t j+1 − t j = ∆ , where ∆ is referred to as the quantization bin width
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Fig. 2 A k-dimensional space measured using m measurements spans a k-dimensional subspace of
Rm and intersects only a few of the Lm available quantization cells.

or resolution. The levels are typically set to the mid-point l j =
1
2 (t j + t j+1) of the

quantization bin C j. Thus, the quantization error introduced to each coefficient is
bounded by ∆/2. A uniform quantizer defines a uniform grid in the m-dimensional
measurement space, as shown in Fig. 1.

In practical systems, the scalar quantizer has finite range, i.e., it saturates if the
signal exceeds a saturation level S. In particular, a uniform finite-range scalar quan-
tizer using B bits per coefficient has quantization interval ∆ = S2−B+1. If a coeffi-
cient exceeds S, the quantizer maps the coefficient to the largest quantization level,
i.e., it saturates. Depending on the magnitude of the coefficient, this may introduce
significant error. However, it is often convenient in theoretical analysis to assume an
infinite quantizer that does not saturate. This assumption is often justified, as S in
practice is set large enough to avoid saturation given a signal class. As described in
Sec. 3.3, this is often suboptimal in compressive sensing applications.

Compared to classical systems, optimal scalar quantizer designs for compres-
sive sensing measurements require extra care. An optimal design with respect to
the measurement error is not necessarily optimal for the signal, due to the non-
linear reconstruction inherent in compressed sensing. While specific designs have
been derived for very specific reconstruction and probabilistic signal models, e.g.,
[89, 56], a general optimal design remains an open problem. Thus the literature has
focused mostly, but not exclusively, on uniform scalar quantizers.

2.2.2 Scalar Quantization and Oversampling

When a signal is oversampled, a scalar quantizer makes suboptimal use of the bit-
rate. The k-dimensional signal space mapped through the measurement operator to
an m-dimensional measurement space, where m> k, spans, at most, a k-dimensional
subspace of Rm, as shown in Fig. 2. As evident from the figure, this subspace inter-
sects only a few of the available quantization cells and, therefore, does not use the
available bits effectively. For an L-level quantizer, the number of quantization cells
intersected Ik,m,L is bounded by [90, 38, 14]

Ik,m,L .

(
Lm
k

)k

(11)
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Using a simple covering argument as in Sec. 2.1, it is thus possible to derive a lower
bound on the error performance as a function of the number of measurements m

ε &

(
2−Bk

m

)
(12)

The bounds hold for any scalar quantizer design, not just uniform ones.
Linear reconstruction, i.e., reconstruction using a linear operator acting on the

scalar quantized measurements, does not achieve the bound (12) [91, 38]. The quan-
tization error using linear reconstruction can only decay as fast as

ε &
2−Bk√

m
. (13)

Instead, consistent reconstruction achieves the optimal bound in a number of
cases. Consistent reconstruction treats the quantization regions as reconstruction
constraints and ensures that the reconstructed signal x̂ quantizes to the same quan-
tization points when measured using the same system. Thus in the oversampled
setting where A is an m×k matrix with m > k, and where q = Q(Ax) one solves the
problem:

find any x̂ s.t. q = Q(Ax̂). (14)

If the measurement operator A is a tight frame formed by an oversampled Discrete
Fourier Transform (DFT), the root mean square error (RMSE) of such a reconstruc-
tion (with respect to a random signal model) decays as O(1/m) [91, 38], i.e., as (12).
In the case of random frames with frame vectors drawn independently from a Gaus-
sian distribution [50] or from a suitable distribution on the (m−1)-sphere [84], the
reconstruction method in (14) also displays RMSE and worst case reconstruction
error decreasing as O(1/m) and O((logm)/m), respectively.

The constraints imposed by consistent reconstruction are convex and can be im-
posed on any convex optimization algorithm. This makes them particularly suitable
for a number of reconstruction algorithms already used in compressive sensing sys-
tems, as we explore in Sec. 3.

The bounds (12) and (13)—which can be achieved with proper design of the
measurement process and the reconstruction algorithm—demonstrate that the most
efficient use of the rate R = mB is in refining each measurement using more bits per
measurement, B, rather than in increasing the number of measurements, m. They
suggest that in terms of error performance, by doubling the oversampling it is pos-
sible to save 0.5 bits per coefficient if linear reconstruction is used and 1 bit per
coefficient if consistent reconstruction is used. This means that a doubling of the
rate by doubling the oversampling factor, is equivalent to a linear increase in the
rate by m/2 or m through an increase in B, for linear and consistent reconstruction,
respectively. So in principle, if rate-efficiency is the objective, the acquisition system
should only use a sufficient number of measurements to reconstruct the signal and
no more. All the rate should be devoted to refining the quantizer. However, these
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bounds ignore the practical advantages in oversampling a signal, such as robust-
ness to erasures, robustness to measurement noise and implementation complexity
of high-rate scalar quantizers. Thus in practice, oversampling is often preferred, de-
spite the rate-inefficiency. Techniques such as Sigma-Delta quantization, which we
discuss in Sec. 2.3, have been developed to improve some of the trade-offs and are
often used in conjunction with oversampling.

2.2.3 Performance Bounds on Sparse Signals

Scalar quantization in compressive sensing exhibits similar bounds as scalar quanti-
zation of oversampled signals. Signals that are k-sparse inRn belong to a union of k-
dimensional subspaces. When measured using m linear measurements, they occupy
a union of k-dimensional subspaces of Rm,

(n
k

)
of them. Using the same counting

argument as above, it is evident that the number of quantization cells intersected,
out of the Lm possible ones, is at most(

n
k

)
Ik,m,L &

(
Lmn
k2

)k

(15)

The resulting error bound is

ε &
2−Bk

m
(16)

&
2−

R
m k

m
, (17)

which decays slower than (6) as the rate increases keeping the number of measure-
ments m constant. Furthermore, as the rate increases with the number measurements
m, keeping B, the number of bits per measurement constant, the behavior is similar
to quantization of oversampled frames: the error can only decay linearly with m.

These bounds are not surprising, considering the similarities of oversampling and
compressive sensing of sparse signals. It should, therefore, be expected that more
sophisticated techniques, such as Sigma-Delta (Σ∆ ) quantization should improve
performance, as they do in oversampled frames. However, their application is not
as straightforward. The next section provides an overview of Σ∆ quantization and
Sec. 4 discusses in detail how it can be applied to compressive sensing.

2.3 Sigma-Delta Quantization

An alternative approach to the scalar quantization techniques detailed in the pre-
vious section is feedback quantization. The underlying idea is that the fundamen-
tal limits for the reconstruction accuracy discussed above can be overcome if each
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quantization step takes into account errors made in previous steps. The most com-
mon feedback quantization scheme is Σ∆ quantization, originally introduced for
bandlimited signals in [47] (cf. [46]). A simple Σ∆ scheme, illustrated in Figure
2.3, shows this feedback structure.

yi yi + ui−1

Q
qi

−

z−1 ui

Fig. 3 A block diagram of a simple 1st order Σ∆ scheme: The input yi is added to the state
variable ui−1 (initialized as u0 = 0) and the sum is scalar quantized. Subsequently, the state variable
is updated as the difference between the scalar quantizer’s input and its output. More complex
designs, featuring higher order Σ∆ quantization with more feedback loops are possible. We discuss
such designs in more detail in Section 4.

A motivation in Σ∆ quantization is that, in some applications, reducing circuit
complexity is desirable, even at the expense of a higher sampling rate. Indeed, Σ∆

designs drastically reduce the required bit depth per sample while allowing for ac-
curate signal reconstruction using simple circuits. In fact, since its introduction, Σ∆

quantization has seen widespread use (see, e.g., [77] and the references therein) in
applications ranging from audio coding to wireless communication.

Nevertheless, a mathematical analysis of Σ∆ quantization in its full generality
has been challenging. A preliminary analysis of simple Σ∆ schemes for restricted
input classes (including constant input and sinusoidal input) was presented in [40]
and follow-up works. However, most of these results were limited to linear, or at best
low-order polynomial error decay in the oversampling rate. This type of error decay
is sub-optimal (albeit better than scalar quantization), and rather far from the opti-
mal exponential error decay. Specifically, a major difficulty that prevented a more
comprehensive treatment was understanding the instabilities caused by the positive
feedback inherent to the Σ∆ circuit designs. For example, depending on the design
of the Σ∆ scheme, the state variables could grow without bound. A crucial idea to
prevent such phenomena for arbitrary band-limited inputs was developed in [32];
their analysis led, for the first-time, to super-polynomial bounds for the error decay.
To date, the best known error bounds decay exponentially in the oversampling rate
[41, 35]. While this is near-optimal (optimal up to constants in the exponent), it has
been shown that with a fixed bit budget per sample, the achievable rate-distortion re-
lationship is strictly worse than for scalar quantization of Nyquist rate samples [63].
That said, increasing the bit budget per sample entails more expensive and complex
circuitry, which grows increasingly costly with every added bit (in fact, the best
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current quantizers provide a resolution of about 20 bits per sample). Thus, for quan-
tizing bandlimited functions, if one wishes to improve the performance or reduce
the cost, one must revert to oversampling-based methods such as Σ∆ quantization.

The accuracy gain of Σ∆ quantization is most prominent when a significant over-
sampling rate and, therefore, a high redundancy of samples is inherent or desired.
Such redundant representations can also be encountered in a finite-dimensional dis-
crete context. Namely, this corresponds to a finite frame expansion in the sense of
(1.32). This observation served as a motivation to devise Σ∆ schemes for finite-
frame expansions, and the first such construction was provided in [7]. In contrast
to oversampled representations of bandlimited signals, which directly correspond
to a temporal ordering, finite frames generally do not have an inherent order, nor
are the frame vectors necessarily close enough to each other to allow for partial er-
ror compensation. Due to this difficulty, the first works on Σ∆ quantization for finite
frame expansions focus on frames with special smoothness properties. Namely, they
assume that the frame Φ = {φ j}N

j=1 has a well controlled frame variation

vΦ :=
N−1

∑
j=1
‖φ j+1−φ j‖2.

The constructions in [7] coupled with (linear) reconstruction via the canonical dual
frame (that is, the Moore-Penrose pseudo-inverse of the matrix that generates the
redundant representation) was shown to yield an error decay on the order of vΦ N−1,
i.e., linear error decay whenever the frame variation is bounded by a constant. By
using more sophisticated Σ∆ schemes these results were later improved to higher
order polynomial error decay [6, 12, 13] in the number of measurements, thereby
beating the bound (12) associated with scalar quantization. Again, these construc-
tions require certain smoothness conditions on the frame and employ the canonical
dual frame for recovery. In a slightly different approach, the design of the feedback
and the ordering of the frame vectors has been considered as part of the quantizer
design [20, 14].

A new take on the frame quantization problem was initiated in [65, 10] where
the authors realized that reconstruction accuracy can be substantially improved by
employing an appropriate alternative dual frame (i.e., a different left-inverse) for
recovery. At the core of this approach is still a smoothness argument, but this time
for the dual frame. Given a frame, an appropriate dual frame, the so-called Sobolev
dual, can be obtained by solving a least-squares problem over the space of all duals
[10]. Again, this yields polynomial error decay, albeit now in more general settings.
Moreover, by optimizing over such constructions, root-exponential error decay can
be achieved [60].

While the definition of the Sobolev dual does not require any smoothness of the
frame, the concrete examples discussed in the aforementioned works still exclu-
sively focused on smooth frames. Similar results on recovery guarantees for frames
without smoothness properties were first obtained for frames consisting of indepen-
dent standard Gaussian vectors [42] and subsequently generalized to vectors with
independent subgaussian entries [61].
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The underlying constructions also form the basis for the Σ∆ quantization schemes
for compressed sensing measurements. Details on such schemes are given in Sec. 4.
The insight behind the schemes is that the number of measurements taken in com-
pressed sensing is typically larger than the support size by at least a logarithmic
factor in the dimension, and there is an interest in choosing it even larger than that,
as this induces additional stability and robustness. Thus, once the support of the
signal has been identified and only the associated signal coefficients need to be de-
termined, one is dealing with a redundant representation. The goal is now to employ
frame quantization schemes to exploit this redundancy.

For typical compressed sensing matrices, any k columns indeed form a frame;
this follows for example from the restricted isometry property. However, as the sup-
port of the signal is not known when quantizing the measurements, it is crucial that
Σ∆ quantization is universal. That is, it must not require knowledge regarding which
of a given collection of frames (namely, those forming the rows of an m× k subma-
trix of A) has been used for encoding. The reconstruction from the resulting digital
encodings then typically proceeds in two steps. First the support is identified using
standard compressed sensing recovery techniques, just treating the quantization er-
ror as noise. In a second step, only the restriction of the measurement matrix to the
identified support columns is considered. For the frame consisting of the rows of
this matrix, one then applies frame quantization reconstruction techniques. Recov-
ery guarantees for such an approach have been proven for Gaussian measurements
[42] and measurements with independent subgaussian entries [61]. It is of great im-
portance that the dual frame used for recovery is chosen properly (e.g., the Sobolev
dual), as it follows from the RIP that the frames never have a small frame varia-
tion. Here again the recovery error bounds decay polynomially in the number of
measurements and beat the analogous bounds for scalar quantization.

Preliminary steps towards a unified approach to support and signal recovery have
been considered in [29]. The reconstruction techniques studied in this work, how-
ever, intrinsically rely on certain non-convex optimization problems, for which no
efficient solution methods are known. Thus the quest remains open for an integrated
approach to reconstruction from Σ∆ -quantized compressed sensing measurements
that combines numerical tractability and guaranteed recovery.

3 Scalar Quantization and Compressive Sensing

The interplay of scalar quantization and compressed sensing has been widely ex-
plored in the literature. In addition to the lower bounds discussed in 2.2.3, there is
significant interest in providing practical quantization schemes and reconstruction
algorithms with strong performance guarantees.

This part explores these results. Our development considers the following quan-
tized compressed sensing (QCS) model:

q = Q(y) = Q(Ax), (18)
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where x ∈ Rn and A ∈ Rm×n. The sensing matrix can be, for instance, a random
Gaussian sensing matrix A such that ai j ∼iid N (0,1). Note that the scaling of the
entries of the sensing matrix should be independent of m. This allows us to fix the
design of the scalar quantizer Q since the dynamic range of the components of Ax is
then independent of the number of measurements. This has no consequence on some
of the common requirements the sensing matrix must satisfy, such as the Restricted
Isometry Property (see Chap. 1), as soon as an appropriate rescaling of A is applied.
For instance, if A has RIP of order 2k and if A→ λA for some λ > 0, then A/λ

has RIP of the same order and the error bound (1.20) in the stability Theorem 1.6
remains unchanged [52].

The first two parts, Sec. 3.1 and Sec. 3.2, focus on the high resolution assumption
(HRA) that simplifies the QCS model. Under HRA, the quantization bin widths—∆

or the distance between two consecutive thresholds—are small with respect to the
dynamic range of the unquantized input. This allows us to model the quantization
distortion Q(Ax)−Ax as uniform white noise [39]. Determining bounds on its power
and moments can better constrain signal reconstruction methods, such as the basis
pursuit denoise (BPDN) program [28, 26], which is commonly used for reconstruct-
ing signals whose CS measurements are corrupted by Gaussian noise. However, the
price to pay is an oversampling in CS measurements.

Sec. 3.3 considers scalar quantizers with saturation. Saturation induces informa-
tion loss in the measurements exceeding the saturation level. However, democracy—
a key property of compressive sensing measurements that makes every measurement
equally informative—provides robustness against such corruption.

In Sec. 3.4, very low-resolution quantization is studied through 1-bit compressed
sensing. In this case, the HRA cannot be assumed anymore—the quantization bins
are the two semi-infinite halves of the real line—and the analysis of the QCS model
relies on high dimensional geometric arguments.

Finally, Sec. 3.5 studies how noise, either on the signal or on the measurements,
can impact the QCS model (18), the reconstruction error and the quantizer trade-
offs. In particular, at constant bit budget R = mB, the total noise power determines
the optimal trade-off between quantizer precision and number of measurements.

3.1 Uniform Scalar Quantization

First we consider the QCS model (18) using a uniform quantizer with resolution ∆

and a set of levels Q,
q = Q(y) = Q(Ax) ∈Qm,

measuring a signal x ∈ Rn using a sensing matrix A ∈ Rm×n. For simplicity, we
assume henceforth that x is sparse in the canonical basis, i.e., Ψ = I.

We consider a quantizer Q that has uniform quantization regions, i.e., t j+1− t j =

∆ for all j, and, setting t j = j∆ , quantization levels l j =
t j+t j+1

2 = ( j+ 1
2 )∆ in Q.
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By definition, the signal x satisfies the following quantization consistency con-
straint (QCu)

‖q−Ax‖∞ ≤ ∆/2. (QCu)

From this fact, we can also deduce that

‖Ax−q‖2 ≤
√

m‖Ax−q‖∞ ≤
√

m∆/2.

This shows that the QCS model can be assimilated to a noisy CS model

q = Q(Ax) = Ax+ξ , (19)

with a “noise” ξ = Q(Ax)−Ax of bounded `2-norm, i.e., ‖ξ‖2 ≤
√

m∆/2.
The quantization noise power can be further reduced using the high resolution

assumption. Under this assumption, the coefficients of y may lie anywhere in the
quantization region determined by the coefficients of q and it is natural to model the
quantization distortion ξ as a uniform white noise, i.e.,

ξi ∼iid U ([−∆/2,∆/2]).

Under this model, a simple use of the Chernoff-Hoeffding bound [45] provides, with
high probability

‖ξ‖2
2 ≤ ε

2
2 := ∆ 2

12 m+ζ
∆ 2

6
√

5
m1/2,

for a small constant ζ > 0.
The first approach in modeling and understanding QCS exploited this bound and

the development of noise-robust CS approaches to impose a distortion consistency
constraint (DCu) [25]

‖q−Ax′‖2 ≤ ε2, (DCu)

on any candidate signal x′ estimating x. This was indeed a natural constraint to
consider since most noise-robust compressed sensing reconstruction methods can
incorporate a bounded `2-norm distortion on the measurements. For instance, the
BPDN program can find a solution x̂ of

x̂ = arg min
z
‖z‖1 s.t. ‖q−Az‖2 ≤ ε2. (BPDN)

Then, if the sensing matrix A′ = A/
√

m satisfies the RIP with constant δ ≤ 1/
√

2
on 2k sparse signals, it is known [22] that

‖x− x̂‖2 . 1√
m ε2 +

1√
k

σk(x)1 � ∆ + 1√
k

σk(x)1,

where σk(x)1 is the best k-term approximation defined in (1.2).
This approach has two drawbacks. First, there is no guarantee that the solution

x̂ satisfies the QCu constraint above, i.e., ‖q−Ax̂‖∞ � ∆/2. This shows that some
sensing information has been lost in the reconstruction. Moreover, as described in
Sec. 2.2.2, the consistency of the solution helps in reaching the lower bound [38, 84,
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50]
(E‖x− x̂‖2)1/2 & k

m ∆

in the oversampled setting. Second, from a maximum a posteriori standpoint, since
every constrained optimisation corresponds to an unconstrained Lagrangian formu-
lation, imposing a small `2-norm on the residual q−Ax̂ can be viewed as enforcing
a Gaussian distribution on ξ , which is not the uniform one expected from the HRA.

To circumvent these two limitations, [52] studied the Basis Pursuit DeQuantizer
(BPDQp) program

x̂p = arg min
z
‖z‖1 s.t. ‖q−Az‖p ≤ εp, (BPDQp)

where εp must be carefully selected in order for x to be a feasible point of this new
`p-constraint. If εp → ∆ as p→ ∞, the BPDQp solution x̂p tends to be consistent
with the quantized measurements. But what is the price to pay, e.g., in terms of
number of measurements, for being allowed to increase p beyond 2?

To answer this, we need a variant of the restricted isometry property.

Definition 1. Given two normed spaces X = (Rm,‖ · ‖X ) and Y = (Rn,‖ · ‖Y )
(with m < n), a matrix A ∈ Rm×n has the Restricted Isometry Property from X
to Y at order k ∈ N, radius 0 ≤ δ < 1 and for a normalization µ > 0, if for all
x ∈ Σk := {u ∈ RN : ‖u‖0 ≤ k},

(1−δ )1/κ ‖x‖Y ≤ 1
µ
‖Ax‖X ≤ (1+δ )1/κ ‖x‖Y , (20)

the exponent κ depending on the spaces X and Y . To lighten notation, we write
that A is RIPX ,Y (k,δ ,µ).

In this general definition, the common RIP is equivalent to RIP`m
2 ,`

n
2
(k,δ ,1) with

κ = 2 (see Chap. 1, Eq. (1.10)). Moreover, the RIPp,k,δ ′ defined in [8] is equiva-
lent to the RIP`m

p ,`
n
p(k,δ ,µ) with κ = 1, δ ′ = 2δ/(1− δ ) and µ = 1/(1− δ ). Fi-

nally, the Restricted p-Isometry Property proposed in [27] is also equivalent to the
RIP`m

p ,`
n
2
(k,δ ,1) with κ = p.

To characterize the stability of BPDQ we consider the space X = `m
p := (Rm,‖ ·

‖p) and Y = `n
2 := (Rm,‖ · ‖2) with κ = 1, and we write RIPp as a shorthand for

RIP`m
p ,`

n
2
. At first sight, it could seem unnatural to define an embedding of X = `n

p
in Y = `m

2 for p 6= 2, those spaces being not isometrically isomorphic to each other
for m = n. However, the RIPp rather sustains the possibility of an isometry between
X ∩AΣk and Y ∩Σk. We will see in Prop. 1 that the existence of such a relation
comes with an exponential growth of m as p increases, a phenomenon that can be
related to Dvoretsky’s theorem when specialized to those Banach spaces [69].

From this new characterization, one can prove the following result.

Theorem 1 ([52, 53]). Let k ≥ 0, 2 ≤ p < ∞ and A ∈ Rm×n be a RIPp(s,δs,µp)
matrix for s ∈ {k,2k,3k} and some normalization constant µp > 0. If

δ2k +
√

(1+δk)(δ2k +δ3k)(p−1)< 1/3, (21)
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then, for any signal x∈Rn observed according to the noisy sensing model y=Ax+n
with ‖n‖p ≤ εp, the unique solution x̂p obeys

‖x∗− x‖ ≤ 4 1√
k

σk(x)1 + 8εp/µp, (22)

where, again, σk(x)1 denotes the best k-term approximation.

This theorem follows by generalizing the fundamental result of Candès in [26] to
the particular geometry of Banach spaces `m

p . It shows that, if A is RIPp with par-
ticular requirement on the RIPp constant, the BPDQp program is stable under both
measurement noise corruption and departure from the strict sparsity model, as mea-
sured by e0. In particular, under the same conditions, given a measurement noise
ξ and some upper bounds εp on its `p-norm, (22) provides the freedom to find the
value of p that minimizes εp/µp.

This is exactly how QCS signal recovery works. Following Theorem 1 and its
stability result (22), we jointly determine a RIPp sensing matrix with known value
µp and a tight error bound εp on the `p norm of the residual q−Ax under HRA. The
existence of a RIPp matrix is guaranteed by the following result [52, 53].

Proposition 1 (RIPp Matrix Existence). Let a random Gaussian sensing ma-
trix A ∈ Rm×n be such that ai j ∼iid N (0,1), p ≥ 1 and 0 ≤ η < 1. Then, A is
RIPp(k,δk,µp) with probability higher than 1−η when we have jointly m ≥ 2p+1

and

m≥ mmax(p/2,1)
0 with m0 = O(δ−2

k

(
k log( n

k )+ k log(δ−1
k )+ log 2

η

)
). (23)

Moreover, µp =Θ(m1/p√p+1).

There is thus an exponential price to pay for a matrix A to be RIPp as p increases:
roughly speaking, for p ≥ 2, we need m ≥ mp/2

0 = O(kp/2 logp/2(n/k)) measure-
ments for satisfying this property with non-zero probability.

To estimate a tight value of εp in the case of quantization noise—since, under
HRA ξ j ∼iid U ([−∆/2,∆/2])—we can show that

‖ξ‖p ≤ εp := ∆

2(p+1)1/p

(
m+ζ (p+1)

√
m
) 1

p , (24)

with probability higher than 1−e−2ζ 2
. Actually, for ζ = 2, x is a feasible solution of

the BPDQp fidelity constraint with a probability exceeding 1−e−8 > 1−3.4×10−4.
Finally, combining the estimation εp with the bound on µp, we find, under the

conditions of Prop. 1,
εp
µp

. ∆√
p+1 . (25)

This shows that, in the high oversampled sensing scenario driven by (23), and
provided the RIPp constants {δk,δ2k,δ3k} satisfy (21), the part of the reconstruction
error due to quantization noise behaves as O(∆/

√
p+1). This is also the error we

get if x is exactly k-sparse since then e0 vanishes in (22).
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Fig. 4 (a) Quality of BPDQp for different m/k and p. (b) and (c): Histograms of ∆−1(Ax̂−q)i for
p = 2 and for p = 10, respectively.

If we solve for p, we can see that the error decays as O(∆/
√

logm) as m in-
creases. There is possibly some room for improvements since, as explained in
Sec. 2.2.2, the lower bound on reconstruction of sparse signal is Ω(∆/m). Beyond
scalar quantization schemes, Sec. 4 will also show that much better theoretical error
reduction can be expected using Σ∆ quantization.

Interestingly, we can, however, observe a numerical gain in using BPDQp for
increasing values of p when the signal x is observed by the model (19) and when m
increases beyond the minimal value m0 needed for stabilizing BPDN (i.e., BPDQ2).

This gain is depicted in Fig. 4. The plots on the left correspond to the reconstruc-
tion quality, i.e., the value SNR = 20log(‖x‖/‖x− x̂p‖) expressed in dB, reached
by BPDQp for different values of p and m/k. The original signal x has dimension
n = 1024 and is k-sparse in the canonical basis, with support of size k = 16 uni-
formly random and normally distributed non-zero coefficients. Each point of each
curve represents average quality over 500 trials. For each sparse signal x, m quan-
tized measurements were recorded using (19) with a random Gaussian sensing ma-
trix A and ∆ = ‖Ax‖∞/40. The reconstruction was done by solving BPDQp with the
Douglas-Rachford algorithms [52], an efficient convex optimization method solv-
ing constrained programs, such as BPDQ1, using simpler proximal operators [30].
Fig. 4(a) shows that higher oversampling ratio m/k allows the use of higher p with
significant gain in the reconstruction quality. However, if m/k is low, i.e., close to
m/k = 10, the best quality is still reached by BPDN. The quantization consistency
of the reconstruction, i.e., the original motivation for introducing the BPDQp pro-
gram, can also be tested. This is shown on Fig. 4(b) and Fig. 4(c) where the his-
tograms of the components of ∆−1(Ax̂p− q) are represented for p = 2 and p = 10
at m/k = 40. This histogram for p = 10 is indeed closer to a uniform distribution
over [−1/2,1/2], while the one at p = 2 is mainly Gaussian.

1 The code of BPDQ is freely available at http://wiki.epfl.ch/bpdq.

http://wiki.epfl.ch/bpdq
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3.2 Non-Uniform Scalar Quantization

If the distribution of the measurements is known, quantization distortion can be de-
creased by adopting a non-uniform scalar quantizer. For instance, when A is a ran-
dom Gaussian matrix viewing the signal as fixed and the matrix as randomly drawn,
the distribution of the components of y=Ax is also Gaussian with a variance propor-
tional to the signal energy ‖x‖2

2 (and similarly, for other matrix constructions, such
as ones drawn with random sub-Gaussian entries). Assuming the acquired signal
energy can be fixed, e.g., using some automatic gain control, the known distribu-
tion of the measurements can be exploited in the design of the quantizer, thanks for
example to the Lloyd-Max algorithm mentioned in Sec. 2.2 [71]. In particular, the
quantization thresholds and levels are then optimally adjusted to this distribution.

This section shows that the formalism developed in Sec. 3.1 can indeed be
adapted to non-uniform scalar quantizer. To understand this adaptation, we exploit
a common tool in quantization theory [39]: any non-uniform quantizer can be fac-
tored as the composition of a “compression” of the real line over [0,1] followed by a
uniform quantization of the result that is finally re-expanded on R. Mathematically,

Q = G−1 ◦Q∆ ◦G , (26)

where G :R→ [0,1] is the compressor and G−1 : [0,1]→R is the expander, giving
the name compander as a portemanteau.

In particular, under HRA, the compressor G of a distortion optimal quantizer,
i.e., one that minimizes E|X−Q(X)|2 for a source modeled as a random variable X
with pdf ϕ , must satisfy

d
dλ

G (λ ) =

(∫
ϕ

1/3(t)dt
)−1

ϕ
1/3(λ ),

and if Q is an optimal B-bit quantizer (e.g., obtained by Lloyd-Max method) then
∆ = 2−B in (26). In this case, the Panter and Dite formula estimates the quantizer
distortion as [79]

E|X−Q(X)|2 'B
2−2B

12 |||ϕ|||1/3 =: σ
2
PD,

with Ls-norm |||ϕ|||s = (
∫ |ϕs(t)|dt)1/s and where “'B” means that the relation tends

to an equality when B is large. The rest of this section assumes that the expected
distribution is Gaussian, i.e., if ϕ ∼N (0,σ2

0 ) and |||ϕ|||1/3 =
1
2

√
3πσ2

0 , as it comes
by seeing the signal fixed (with known energy) and the Gaussian matrix random
in CS.

Compander theory generalizes quantization consistency in the “compressed” do-
main, i.e.,

|G (λ )−G (Q(λ ))| ≤ ∆/2 = 2−B−1.

Therefore, for the right compressor G , in the noiseless QCS model (18), the signal x
provides consistency constraints to be imposed on any reconstruction candidate x′:
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‖G (Ax′)−G (q)‖∞ ≤ ∆/2 = 2−B−1. (QC)

This generalizes the uniform quantization consistency (QCu) introduced in Sec. 3.1.
The compander formalism is leveraged in [53], to generalize the approach de-

scribed in Sec. 3.1 to non-uniform quantization. In particular, a new set of para-
metric constraints are introduced, the p-Distortion Consistency (or DpC) for p≥ 2.
These have for limit cases the QC above and the distortion consistency constraint
(DC) arising from Panter and Dite formula, namely, the constraint imposing any
reconstruction candidate x′ to satisfy [31]

‖Ax′−q‖2
2 ≤ ε

2
PD := mσ

2
PD, (DC)

with DC asymptotically satisfied by x when both B and m are large.
The DpC constraint corresponds to imposing that a candidate signal x′ satisfies

‖Ax′−Qp[q]‖p,w = ‖Ax′−Qp[Ax]‖p,w ≤ εp,w, (DpC)

where ‖v‖p,w = ‖diag(w)v‖p is the weighted `p-norm of v ∈ Rm with weights
w ∈ Rm

+ , denoting by diag(w) the diagonal matrix having w on its diagonal. The
mapping Qp :Rm→Rm is a post-quantization modification of q characterized com-
ponentwise hereafter and such that Qp[q] = Qp[Ax].

Under HRA, a careful design of Qp, w and the bounds εp,w ensures that D2C
amounts to imposing DC on x′ and, that as p→+∞, DpC tends to QC [53]. Briefly,
if qi falls in the quantization bin C j, Qp(qi) is defined as the minimizer of

min
λ∈C j

∫
C j

|t−λ |p ϕ(t)dt.

Actually, Q2(qi) = qi by equivalence with (10), and limp→∞ Qp(qi) =
1
2 (t j + t j+1).

The weights are defined by the quantizer compressor G with wi(p)= d
dλ

G
(
Qp[qi]

) p−2
p .

Moreover, under HRA and asymptotically in m, an optimal bound εp reads ε
p
p,w =

m 2−Bp

(p+1)2p |||ϕ|||1/3. For p = 2, ε2,w = εPD matches the distortion power estimated by

the Panter and Dite formula, while for p→ +∞, εp,w→ 1
2 2−B, i.e., half the size of

the uniform quantization bins in the domain compressed by G .
Similarly to Sec. 3.1, using (DpC) as a fidelity constraint in the signal reconstruc-

tion leads to the definition of a Generalized Basis Pursuit DeNoise program:

x̂p,w = arg min
z∈Rn
‖z‖1 s.t. ‖Qp(q)−Az‖p,w ≤ εp,w. (GBPDN(`p,w))

Ideally, we would like to directly set p=∞ in order to enforce consistency of x̂p,w
with q. However, as studied in [53], it is not certain that this limit case minimizes
the reconstruction error ‖x− x̂p,w‖ as a function of p, given a certain number of
measurements m.

Actually, the stability of GBPDN can be established from the one of BPDQ
(Sec. 3.1) if we impose A to satisfy the more general RIP`m

p,w,`
n
2
, as formally defined
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in (20). Indeed, for any weighting vector w, we have always ‖Qp(q)−Az‖p,w =
‖q′−A′z‖p with q′ = diag(w)Qp(q) and A′ = diag(w)A. Therefore, we know from
Theorem 1 that if A′ is RIPp, or equivalently if A is RIP`m

p,w,`
n
2
, with the additional

condition (21) on its RIP constants at different sparsity levels, then the solution of
GBPDN(`p,w) will be stable in the sense of (22), i.e.,

‖x̂p,w− x‖ . εp,w
µp,w

+ σk(x)1√
k
.

Compared to the unit weights case (as involved by the RIPp), a random Gaus-
sian matrix A with ai j ∼iid N (0,1) satisfies the RIP`m

p,w,`
n
2
(k,δk,µp,w) with high

probability provided that m grows like O
(
(θpδ

−2
k (k log(n/k))p/2

)
. The ratio θp :=

‖w‖∞/(m−1/p‖w‖p) depends on the conditioning of w. It is equal to 1 for con-
stant weights (recovering (23)), while it increases with the dynamic range of w.
For the weight w(p) defined previously and with a Gaussian optimal quantizer,
θ

p/2
p 'm,B

√
p+1 asymptotically in m and B.

As for the uniform case, a strong (polynomial) oversampling in m is thus required
for satisfying the RIP`m

p,w,`
n
2

at p > 2 compared to the minimal number of measure-
ments needed at p = 2. However, an asymptotic analysis of εp,w/µp,w shows that
the GBPDN reconstruction error due to quantization for a Gaussian sensing matrix
behaves like [53]

‖x̂p,w− x‖. 2−B√
p+1 +

σk(x)1√
k
,

This error decay is thus similar to the one found in (25) for uniform QCS with now
a direct interpretation in terms of the quantizer bit-depth B.

Efficient convex optimization methods, like those relying on proximal algorithms
[30], can also be used to numerically solve GBPDN. In [53], numerical simulations
show that the reconstruction qualities reached in the reconstruction of sparse signals
from their non-uniformly quantized measurements behave similarly, with respect to
p and m, to those observed in Sec. 3.1 for the uniformly quantized CS setting.

We should also remark that beyond QCS, the stability of GBPDN (when A is
RIPp,w) can also be used for reconstructing signals acquired under a (heteroscedas-
tic) noisy sensing model y = Ax+ξ where ξ ∈Rm is an additive generalized Gaus-
sian noise with bounded `p,w-norm for some specific weight w ∈ Rm

+ [92, 53].

3.3 Finite-Range Scalar Quantizer Design

So far we have only considered a scalar quantizer model without saturation. Prac-
tical scalar quantizers have a finite range, which implies a saturation level ±S and,
using B bits per coefficient, a quantization interval equal to

∆ = S2−B+1. (27)
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In order to determine the optimal saturation rate, the system designed needs to bal-
ance the loss of information due to saturation, as S decreases, with the increased
quantization error due to an increasing quantization interval in (27), as S increases.
In classical systems, this balance requires setting the quantization level relatively
close to the signal amplitude to avoid saturation. On the other hand, in compressive
sensing systems, the incoherence of the measurements with the sparsity basis of the
signal makes them more robust to loss of information and enables higher saturation
levels with smaller quantization intervals.

A key property of compressive measurements, which provides the robustness
to loss of information, is democracy. Intuitively, each measurement contributes an
equal amount of information to the reconstruction. If the signal is slightly oversam-
pled, relative to the rate required for CS reconstruction, then any subset with enough
measurements should be sufficient to recover the signal. The notion of democracy
was first introduced in [23, 43] in the context of information carried in each bit of
the representation; the definition below strengthens the concept and formulates it in
the context of compressive sensing [33, 66].

Definition 2. Let A ∈ Rm×n, and let m̃ ≤ m be given. We say that A is (m̃,k,δk)-
democratic if, for all row index sets Γ such that |Γ | ≥ m̃, any matrix Ã = ((AT )Γ )

T ,
i.e., comprised of a Γ -subset of the rows of A, satisfies the RIP of order k with
constant δk.

This definition takes an adversarial view of democracy: a matrix A is democratic if
an adversary can pick any d = m− m̃ rows to remove from A, and the remaining
matrix still satisfies the RIP. This is a much stronger guarantee than just randomly
selecting a subset of the rows to be removed. Such a guarantee is important in the
case of saturation robustness because the saturated measurements are the largest
ones in magnitude, i.e., potentially the ones most aligned with the measured signal
and, presumably, the ones that capture a significant amount of information. Still,
despite this strict requirement, randomly generated matrices can be democratic if
they have a sufficient number of rows.

Theorem 2 ([33]). Let A ∈ Rm×n with elements ai j drawn according to N (0, 1
m )

and let m̃≤ m, k < m̃, and δ ∈ (0,1) be given. Define d = m− m̃. If

m =C1(k+d) log
(

n+m
k+d

)
, (28)

then with probability exceeding 1− 3e−C2m we have that A is (m̃,k,δ/(1− δ ))-
democratic, where C1 is arbitrary and C2 = (δ/8)2− log(42e/δ )/C1.

The practical implication of democratic measurements is that information loss due
to saturated measurements can be tolerated.

Saturated measurements are straightforward to detect, since they quantize to the
highest or the lowest level of the quantizer. The simplest approach is to treat satu-
rated measurements as corrupted, and reject them from the reconstruction, together
with the corresponding rows of A. As long as the number of saturated measurements
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(a) k = 20 (b) x ∈ w`0.4 (c) x ∈ w`0.8

Fig. 5 Saturation performance using `1 minimization for (a) exactly k = 20-sparse signals and
compressible signals in weak `p for (b) p = 0.4 and (c) p = 0.8, with n = 1024, m = 384, and
B = 4. The reconstruction SNR as a function of the saturation level is measured on the left y-axis
assuming (solid line) conventional reconstruction, i.e., ignoring saturation, (dotted line) enforcing
saturation consistency, and (dashed line) rejecting saturated measurements. The dashed-circled
line, measured on the right y-axis, plots the average saturation rate given the saturation level.

is not that large, the RIP still holds and reconstruction is possible using any sparse
reconstruction algorithm.

However, saturated measurements do contain the information that the measure-
ment is large. In the context of consistent reconstruction, they can be used as con-
straints in the reconstruction process. If a measurement i is positively saturated, then
we know that (Ax)i ≥ S−∆ . Similarly, if it is negatively saturated, (Ax)i ≤−S+∆ .
These constraints can be imposed on any reconstruction algorithm to improve per-
formance [66].

Fig. 5 demonstrates the effect of each approach. As demonstrated in the plots,
rejecting saturated measurements or treating them as consistency constraints sig-
nificantly outperforms just ignoring saturation. Furthermore, if saturation is prop-
erly taken into account, a distortion optimal finite-range scalar quantizer should be
designed with significant saturation rate, often more than 20%. While the figures
suggest that saturation rejection and saturation consistency have very similar per-
formance, careful examination demonstrates, as expected, that consistency provides
more robustness in a larger range of saturation rates and conditions. A more careful
study and detailed discussion can be found in [66]. Furthermore, further gains in the
bit-rate can be achieved by coding for the location of the saturated measurements
and transmitting those separately [58].

3.4 1-Bit Compressive Sensing

The simplest scalar quantizer design to implement in hardware is a 1-bit quantizer,
which only computes the sign of its input. Its simplicity makes it quite appealing for
compressive sensing systems.

The sensing model of 1-bit CS, first introduced in [19], is very similar to the
standard scalar quantization model
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q = sign(Ax), (29)

where sign(xi) is a scalar function applied element-wise to its input and equals 1 if
xi ≥ 0 and −1 otherwise.

One of the challenges of this model is that it is invariant under changes of the sig-
nal amplitude since sign(cx) = sign(x) for any positive c. For that reason, enforcing
consistency is not straightforward. A signal can be scaled arbitrarily and still be con-
sistent with the measurements. Thus, a magnitude constraint is typically necessary.
Of course, the signal can only be recovered within a positive scalar factor.

Similarly to multi-bit scalar quantization models, the literature in this area fo-
cuses on deriving lower bounds for the achievable performance, reconstruction guar-
antees, as well as practical algorithms to invert this problem.

3.4.1 Theoretical Performance Bounds

A lower bound on the achievable performance, can be derived using a similar anal-
ysis as in Sec. 2.2.3. The main difference is that the quantization cells are now or-
thants in the m-dimensional space, shown in Fig. 6(a), corresponding to each mea-
sured sign pattern. Each subspace of the

(n
k

)
possible ones intersects very few of

those orthants, as shown in Fig. 6(b), i.e., uses very few quantization points. In
total, at most I ≤ 2k

(n
k

)(m
k

)
quantization cells are intersected by the union of all

subspaces [54].
Since the signal amplitude cannot be recovered, the lower bound is derived on k-

dimensional spheres and coverings using spherical caps instead of balls. The deriva-
tion ensures that the spherical caps have radius sufficiently large to cover the

(n
k

)
spheres. Despite the similarity to the argument in Sec. 2.2.3, this case requires a
little bit more care in the derivation; details can be found in [54]. Still, the result is
very similar in nature. Defining Σ ∗k := {x ∈ Σk,‖x‖2 = 1}, we have:

Theorem 3 ([54]). Given x ∈ Σ ∗k , any estimation x̂ ∈ Σ ∗k of x obtained from q =
sign(Ax) has a reconstruction error of at least

‖x̂− x‖ &
k

m+ k3/2 ,

which is on the order of k
m as m increases.

If the sensing matrix A is Gaussian, i.e., if ai j ∼iid N (0,1), any k-sparse signal
that has consistent measurements will not be very far from the signal producing the
measurements, assuming a sufficient number of them. This guarantee approaches
the lower bound of Theorem 3 within a logarithmic factor.

Theorem 4 ([54]). Fix 0≤ η ≤ 1 and εo > 0. If the number of measurements is

m≥ 2
εo

(
2k log(n)+4k log( 17

εo
)+ log 1

η

)
, (30)

then for all x,x′ ∈ Σ ∗k we have that
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(a) Orthants in measurement space (b) Orthant intersection
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k
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a3
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a1

(c) Signal space consistency

Fig. 6 Behavior of 1-bit measurements. (a) The measurement space, Rm is separated to high-
dimensional orthant, according to the sign of each orthant. (b) Signals in a k-dimensional space
(k < m) will only map to a k dimensional subspace of Rm and intersect only a few orthants of the
measurement space. (c) The same behavior in the signal space. Each measurement vector defines
its orthogonal hyperplane. The measurement sign identifies which side of the hyperplane the sig-
nal lies on; all signals in the shaded region have consistent measurements. Newer measurements
provide less and less information; the chance of intersecting the consistency region decreases.

‖x− x′‖2 > εo ⇒ sign(Ax) 6= sign(Ax′), (31)

with probability higher than 1−η . Equivalently, if m and k are given, solving for ε0
above leads to

‖x− x′‖2 . k
m log mn

k , (32)

with the same probability.

Fig. 6(c) provides further intuition on these bounds by illustrating how 1-bit
measurements operate in the signal space. Specifically, each measurement corre-
sponds to a hyperplane in the signal space, orthogonal to the measurement vector.
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The measurement sign determines on which side of the hyperplane the signal lies.
Furthermore, the signal is sparse, i.e., lies in Σ ∗k . A consistent sparse reconstruction
algorithm can produce any sparse signal in the indicated shaded region.

A new measurement provides new information about the signal only if the cor-
responding hyperplane intersects the region of consistent signals and, therefore,
shrinks it. However, as more measurements are obtained and the consistency re-
gion shrinks, newer measurements have lower probability of intersecting that region
and providing new information, leading to the 1/m decay of the error.

Consistency can be quantified using the normalized hamming distance between
measurements

dH(q,q′) =
1
m ∑

i
qi⊕q′i,

where ⊕ denotes the exlusive-OR operator. It is, thus, possible to show that if x
and x′ above differ by no more than s bits in their 1-bit measurements, i.e., if
dH(sign(Ax),sign(Ax′)) ≤ s/m, then, with m & 1

ε0
k logmax(m,n) and with high

probability [51],
‖x− x′‖2 ≤ k+s

k εo.

A bound similar to (32) exists for sign measurements of non-sparse signals in the
context of quantization using frame permutations [76]. In particular, reconstruction
from sign measurements of signals exhibits (almost surely) an asymptotic error de-
cay rate arbitrarily close to O(1/m). However, in contrast to Theorem 4 this result
holds only for a fixed signal and not uniformly for all signals of interest.

Note that these results focus on matrices generated using the normal distribution.
It has been shown that matrices generated from certain distributions do not perform
well in this setting, even though they can be used in standard compressive sens-
ing [82]. For instance, consider a random Bernoulli matrix A such that ai j = 1 or−1
with equal probability. In this case, the two distinct sparse vectors (1,0, · · · ,0)T and
(1,λ ,0, · · · ,0)T with 0≤ λ < 1 are λ apart and they generate the same quantization
vector q = sign(A1), where A1 is the first column of A. It is not possible, therefore,
to distinguish those two vectors from their 1-bit observations by increasing m and
guarantee that the reconstruction error will decay as measurements increase. This
counterexample, however, is exceptional in the sense that such failures can only
happen if the signal can have a very large entry. Under mild flatness assumptions on
the `∞-norm of the signal, arbitrary subgaussian measurements can be utilized [1].

These results establish lower and upper bounds on distances between two sparse
signals that have (almost) consistent 1-bit measurements. It is also possible to pro-
vide an embedding guarantee similar to the RIP [25]. Since the measurement does
not preserve the signal magnitude, we should not expect distances of signals to be
preserved. However, the measurements do preserve angles between signals. Defin-
ing dS(u,v) = 1

π
arccos(uT v), u,v ∈ Sn−1, we have:

Theorem 5 (Binary ε-Stable Embedding (BεSE) [54]). Let A ∈ Rm×n be a ran-
dom Gaussian matrix such that ai j ∼iid N (0,1). Fix 0 ≤ η ≤ 1 and ε > 0. If the
number of measurements satisfies
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m ≥ 2
ε2

(
k log(n)+2k log( 35

ε
)+ log( 2

η
)
)
, (33)

then with probability exceeding 1−η

dS(x,x′)− ε ≤ dH(sign(Ax),sign(Ax′))≤ dS(x,x′)+ ε, (34)

for all x,x′ ∈ Σ ∗k .

In other words, up to an additive distortion that decays as ε . ( k
m log mn

k )1/2, the
Hamming distance between sign(Ax) and sign(Ax′) tends to concentrate around the
angular distance between x and x′. Notice that, in contrast to the RIP, a vanishing
distance between the quantized measurements of two signals does not imply they
are equal, i.e., we observe a (restricted) quasi-isometry between Σ ∗k and sign(AΣ ∗k )
instead of the common RIP [49]. This comes from the additive nature of the distor-
tion in (34) and is a direct effect of the inherent ambiguity due to quantization.

This embedding result has been extended to signals belonging to convex sets
K ⊂ Rn provided that their Gaussian mean width

w(K ) = E sup{uT g : u ∈ K −K }, g∼N (0, In×n), (35)

with K−K := {v− v′ : v,v′ ∈K }, can be computed [80, 81, 82]. In particular, if

m≥Cε
−6w2(K )

for some constant C > 0, then (34) holds with high probability for any x,x′ ∈K ∩
Sn−1. In particular, for

K = Kn,k := {u ∈ Rn : ‖u‖1 ≤ k1/2,‖u‖2 ≤ 1},

since w2(Kn,k) = O(k logn/k) [81], an embedding exists between the set of com-
pressible vectors modeled by Kn,k and {−1,+1}m provided that m≥Cε−6 k logn/k.

Note that generalizations of these embeddings to non-linear functions other than
the sign operator, or to stochastic processes whose expectation is characterizable by
such functions, are also possible [81].

3.4.2 Reconstruction from 1-Bit Measurements

The original efforts in reconstructing from 1-bit measurements enforced ‖x‖2 = 1
as a reconstruction constraint, formulating the non-convex `1 minimization problem

x̂ = argmin
x
‖x‖1, s.t. q = sign(Ax), ‖x‖2 = 1. (36)

Even though the problem is not convex, a number of algorithms have been shown
experimentally to converge to the solution [19, 67]. More recently, a number of
greedy algorithmic alternatives have also been proposed [15, 3, 54].
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Fig. 7 Angular reconstruction error εS = dS(x, x̂) vs. consistency error εH = dH(sign(Ax̂),q) for
different greedy reconstructions (MSP, RSS and BITH). BIHT returns a consistent solution in most
trials. When A is a BεSE, (34) predicts that the angular error εS is bounded by the hamming error
εH (and conversely) in addition to an offset ε . This phenomenon is confirmed by an experimental
linear trend (in dashed) between the two errors that improves when m/n increases [54].

Most of these algorithms attempt to enforce consistency by introducing a one-
sided penalty for sign violations

J(Az,q) = ‖(q◦Az)−‖q, (37)

where ◦ is the element-wise product between vectors, (yi)− = yi if yi is negative and
0 otherwise, also applied element-wise, and the `q norm is typically the `1 or the `2
norm. Typically, a descent step is performed using the gradient of (37), followed by a
support identification and sparsity enforcement step. Often, care is taken in selecting
the descent step, especially considering the signal is on the unit `2 sphere [67].
Assuming a certain noise level, a maximum likelihood formulation can also be used
to remove the norm constraint [3].

For example, the Binary IHT (BIHT), a variation of the popular Iterative Hard
Thresholding (IHT) [11], uses the one-sided `1 norm in (37) and follows its subgra-
dient 1

2 AT (q− sign(Az)). The algorithm is defined by the iteration

zn+1 = Hk
(
zn + 1

2 AT (y− sign(Azn))
)
, z0 = 0, (38)

where Hk(·) is a hard threshold, keeping the largest k coefficients of its input and
setting the remaining ones to zero.

The BIHT does not have convergence or reconstruction guarantees to a consistent
output. Still, as shown in Fig. 7, it works surprisingly well compared to other greedy
approaches. Moreover, variations exist to make it more robust to potential binary
errors in the knowledge of q [54] or to extend it to multi-bit scalar quantization [51].

The first iteration of BIHT is a simple truncated back-projection, x̂0 = Hk(AT q)
whose distance to x is known to decay asymptotically as

√
k/m for a Gaussian

matrix A [51, 3]. Furthermore, x̂0 matches the solution of the (feasible) problem

argmax
z

qT Az s.t. z ∈ Σ
∗
k ,
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where maximizing qT Az also promotes the 1-bit consistency of z with q.
This optimization can be generalized to any convex sets K ⊂Rn where x can lie,

such as the set K = Kn,k of compressible signals with Gaussian width w(Kn,k) �
k logn/k [81]. If m≥Cε−2w(K )2 for some C > 0, and a fixed x is sensed using (29)
with a Gaussian sensing matrix A, then the solution to

x̂ = argmax
z

qT Az s.t. z ∈K ,

satisfies ‖x̂− x‖2 = O(ε) with high probability. Interestingly, under certain condi-
tions, this holds also for sensing models other than (29), where the sign operator is
replaced, for instance, by the logistic function [81].

What makes it difficult to provide reconstruction error estimates for algorithms
motivated by the problem (36) is the non-convex constraint ‖x‖2 = 1, whose con-
vex relaxation allows for the zero solution and is hence meaningless. To overcome
this obstacle, it has been proposed in [80, 81] to impose a norm constraint to pre-
vent trivial solutions on the measurements rather than the signal. This results in a
different problem, which allows for a meaningful convex relaxation. Namely, since
q = sign(Ax), it follows that at the solution qT (Ax) = ‖Ax‖1. Thus, by constraining
this norm, the following convex problem can be formulated:

x̂ = argmin
x
‖x‖1, s.t. q = sign(Ax), qT Ax = 1 (39)

As shown in [80], the problem in (39) does allow for reconstruction guarantees:
If m ∼ ε−5k log(n/k), the solution x̂ recovered from quantized Gaussian measure-
ments of a sparse signal x is such that dS(x, x̂)≤ ε with high probability. This holds
uniformly for all signals x ∈Rn. Under flatness assumptions on the signal, recovery
guarantees can also be proved for arbitrary subgaussian measurements [1].

3.5 Noise, Quantization and Tradeoffs

The sections above were focused on noiseless QCS models. These models only
consider the statistical or the geometrical properties of quantization of CS measure-
ments under high or low resolution modes. However, any signal acquisition system
is subject to noise corruption before quantization, either on the measurement process
or on the signal itself. Such noise can be incorporated in a more general model

q = Q(A(x+ξx)+ξs), (40)

where ξx ∈ Rn and ξs ∈ Rm corrupt the signal and the sensing, respectively, before
quantization. Examining the impact of such noise in signal recovery leads to new
interesting questions.

In [93] two efficient reconstruction methods are developed for sparse or com-
pressible signals sensed according (40) under sensing noise only, i.e., ξx = 0. The
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two approaches are mainly numerical: one relies on a maximum likelihood formu-
lation, built on the quantization model and on a known Gaussian noise distribution,
the other follows a least square principle. The two resulting methods are both reg-
ularized by an `1-norm accounting for sparse signal prior. A provably convergent
procedure inherited from a fixed point continuation method is used for reconstruct-
ing the signal in the two possible frameworks. With their approach, the combined
effects of noise and coarse quantization can be jointly handled. Reasonable recon-
struction results are achieved even using 1 or 2 bits per measurement.

The case ξx 6= 0, ξs = 0 boils down to an interaction of the well-understood
phenomenon of noise folding in CS [34] and quantization [68]. Noise-folding in
unquantized CS says that under a weak assumption of orthogonality between the
rows of A, the variance of the component Aξx undergoes a multiplication by n/m
compared to the variance σ2

ξ
of ξx. This impacts directly the reconstruction error of

signals. The corresponding MSE is then n/m times higher than the noise power, or
equivalently, the SNR looses 3 dB each time m is divided by 2 [34].

An extension of this result to noisy QCS has been provided in [68], assuming
the sensing matrix A is RIP of order k and constant δ . In this case, if ξx is standard
normally distributed and if the quantizer has resolution B, then, under a random
signal model where the signal support T is chosen uniformly at random in {1, · · · ,n}
and the amplitudes of the non-zero coefficients are standard normally distributed,

(1−δ )E‖x− x̂‖2 = 2−2B+1 k
mE‖x‖2 +2

(
2−2B +1

) n
m E‖ξx|T‖2 + kmκ, (41)

where x̂ = (A†
T q)T is the oracle-assisted reconstruction of x knowing the support T

of x for each of its realization, and

κ = max
i 6= j
|EQ(aT

i (x+ξx))Q(aT
j (x+ξx))|,

measures the worst correlation between distinct quantized measurements.
In (41), the first term accounts for the quantization error of the signal itself, while

the second term represents both the error due to folded signal noise as well as the
quantization of that noise. Finally, the third term reflects a distortion due to correla-
tion between quantized measurement. It is expected to be negligible in CS scenarios,
specially when B increases or if a dithering is added to Q [39].

Numerical study of (41) shows that, at constant rate R = mB, a tradeoff can be
expected between a measurement compression (MC) regime, where m is small (but
still high enough to guarantee A to be RIP) and B is high, and a quantization com-
pression (QC) regime, where m is high compared to the standard CS setting but B is
small. Interestingly, the optimal bit-depth B, minimizing the expected reconstruction
error, depends on the input SNR: ISNR = 20log10 ‖x‖/‖ξx‖. This is illustrated in
Fig. 8 where the evolution of (41) (discarding the effect of the third term) is plotted
for four different noise scenarios. The optimal bit depth decays smoothly with the
ISNR, suggesting that the QC regime is preferable at low ISNR while MC is clearly
better at high ISNR. The general behavior of Fig. 8 is also confirmed on Monte
Carlo error estimation of the oracle-assisted reconstruction defined above [68].
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Fig. 8 Upper bound on the oracle-assisted reconstruction error as a function of bit-depth B and
ISNR at constant rate R = mB [68]. The black dots denote the minimum point on each curve.

4 Sigma-Delta Quantization for Compressive Sensing

As mentioned in the introduction, Σ∆ quantization for compressed sensing funda-
mentally builds on corresponding schemes for finite frames. Thus before presenting
an analysis specific to compressed sensing, we first discuss the finite frame case.

4.1 Σ∆ Quantization for Frames

Let Φ ∈Rn×N with columns {φ j}N
j=1 be a frame in the sense of (1.32) and consider

the frame expansion
c = Φ

T x

of a signal x ∈ Rn. The goal is now to quantize c as a whole such that the quantized
representation q allows for approximate recovery of x. Σ∆ quantization schemes
obtain such a q using a recursive procedure, which we will now explain in detail.

At the core of the schemes is a uniform scalar quantizer Q, which maps a real
number to the closest point in a codebook of the form

Q =
{
(± j−1/2)∆ , j ∈ {1, ...,L}

}
. (42)

A Σ∆ scheme applies such a quantizer sequentially to the entries of c, taking in
each quantization step the errors made in r previous steps into account. The com-
plexity parameter r is referred to as the order of the Σ∆ scheme; it quantifies the
trade-off between required storage and achievable accuracy.

A first order Σ∆ quantization scheme, the simplest such algorithm, hence re-
tains the error only for one step. In the following formalization associated with the
so-called greedy first order Σ∆ scheme, the error parameter appears as the state
variable ui; it measures the total accumulated error up to step i. The quantized frame
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coefficient vector q ∈QN is computed by running the iteration

qi = Q(ui−1 + ci)

ui = ui−1 + ci−qi. (43)

As initialization, one typically uses u0 = 0. In matrix-vector notation, the above
recurrence relation reads

Du = c−q. (44)

Here D ∈ RN×N is the finite difference matrix with entries given in terms of the
Kronecker delta by Di j = δi, j−δi+1, j, that is,

D =


1 0 0 · · · 0
−1 1 0 0
0 −1 1 0
...

. . . . . .
...

0 0 · · · −1 1

 . (45)

The scheme is explicitly designed such that each q j partly cancels the error made
up to q j−1. When the signal is approximated as Φ̃q using a dual frame Φ̃ ∈ Rn×N

with columns {φ̃ j}N
j=1, this entails that one seeks to compensate an error in the

direction of a dual frame vector φ̃ j−1 using a distortion in the direction of the next
dual frame vector φ̃ j. This serves as a motivation to choose a smoothly varying dual
frame, i.e., with subsequent dual frame vectors close to each other.

Bounding the reconstruction error using (44) in terms of the operator norm
‖A‖2→2 := sup‖x‖2≤1 ‖Ax‖2, one obtains

‖x− Φ̃q‖2 = ‖Φ̃(c−q)‖2 = ‖Φ̃Du‖2 ≤ ‖Φ̃D‖2→2‖u‖2.

The smoothness intuition is reflected in the fact that the columns of Φ̃D are given
by φ̃ j− φ̃ j−1. Thus more precisely, finding a smooth dual frame Φ̃ amounts to min-
imizing ‖Φ̃D‖2→2.

If one is willing to store more than one previous value of the state variable, that
is, to consider a higher order Σ∆ scheme, it is possible to profit from higher order
smoothness of the dual frame. Such a generalization of (43) is the greedy r-th order
Σ∆ scheme, which is associated with the recurrence relation

Dru = c−q. (46)

Here, the iteration to compute the quantized coefficients is explicitly given by
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qi = Q
( r

∑
j=1

(−1) j−1
(r

j

)
ui− j + ci

)
ui =

r
∑
j=1

(−1) j−1
(r

j

)
ui− j + ci−qi. (47)

As before, one initializes ui = 0, i≤ 0. The reconstruction error is now bounded by

‖x− Φ̃q‖2 = ‖Φ̃(c−q)‖2 = ‖Φ̃Dru‖2 ≤ ‖Φ̃Dr‖2→2‖u‖2. (48)

Examining (48), it is advantageous to choose a dual frame that minimizes ‖Φ̃Dr‖2→2,
and a Σ∆ scheme that yields a state-variable sequence with well bounded ‖u‖2. This
motivates the following definitions.

Definition 3. Let Φ ∈ Rn×N be a frame and r be a positive integer. Then the r-th
order Sobolev dual of Φ is given by

Φ̃
(r) := argmin‖Φ̃Dr‖2→2 = (D−r

Φ)†D−r, (49)

where the minimum is taken over all dual frames of Φ .

Definition 4. A Σ∆ scheme with a codebook Q is stable if there exist constants C1
and C2 such that whenever ‖c‖∞ ≤C1 we have ‖u‖∞ ≤C2.

In general, designing and proving the stability of Σ∆ quantization schemes of
arbitrary order can be quite difficult if the number of elements in the associated
codebook is held fixed. This challenge is especially difficult in the case of 1-bit
quantizers and overcoming it is the core of the contributions of [32, 41, 35], where
stable Σ∆ quantization schemes of arbitrary order are designed. On the other hand, if
the number of elements in the codebook (42) is allowed to increase with order, then
even the simple greedy Σ∆ schemes (47) are stable, as the following proposition
shows (see, e.g., [13]).

Proposition 2. The greedy r-th order Σ∆ scheme (47) associated with the 2L-level
scalar quantizer (42) is stable, with ‖u‖∞ ≤ ∆/2, whenever ‖c‖∞ ≤ ∆(L− 2r−1 +
2−1).

Proof. The proof is by induction. We begin by rewriting (47) in terms of auxiliary
state variables u( j)

i , j = 1, ...,r and u(0)i = ci−qi as

qi = Q
( r

∑
j=1

u( j)
i−1 + ci

)
u( j)

i = u( j)
i−1 +u( j−1)

i , j = 1, ...,r (50)

with u( j)
0 = 0 for j = 1, ...,r. Note that with this notation u(r)i = ui. Now suppose that

|u( j)
i−1| ≤ 2r− j∆/2 for all j ∈ {1, ...,r}, then |∑r

j=1 u( j)
i−1| ≤ (2r−1)∆/2. Since by the

Σ∆ iterations we have u( j)
i = ∑ j

k=1 u(k)i−1 + ci−qi we deduce that
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Fig. 9 The first order Σ∆ (left) and scalar quantization (right) cells associated with 2-bit quantiza-
tion of ΦT x where x is in the unit ball of R2 and Φ is a 2×15 Gaussian random matrix.

|u(r)i |= |
r

∑
k=1

u(k)i−1 + ci−Q(
r

∑
k=1

u(k)i−1 + ci)| ≤ ∆/2

provided ‖c‖∞ ≤ ∆(L−2r−1 +1/2). Moreover, by (50), |u( j)
i | ≤ 2r− j∆/2.

Working with stable r-th order Σ∆ schemes and frames with smoothness proper-
ties, and employing the Sobolev dual for reconstruction, it was shown in [10] that the
reconstruction error satisfies ‖x−Φ̃q‖2≤Cr,Φ N−r, where the constant Cr,Φ depends
only on the quantization scheme and the frame. Such results for Σ∆ -quantization
show that its error decay rate breaks the theoretical ∼ 1/N lower bound of scalar
quantization described in the introduction. Fig. 9 helps to illustrate why such a result
is possible. It shows the quantization cells associated with two bit quantization of
ΦT x, where x in the unit ball ofR2, using both first order Σ∆ quantization and scalar
quantization. For vectors belonging to a given cell, the worst case error achieved by
an optimal decoder is proportional to the diameter of the cell. The figure shows
that the cells resulting from Σ∆ quantization are smaller than those resulting from
scalar quantization, indicating the potential for a smaller reconstruction error. For a
detailed overview of Σ∆ quantization of frame expansions see, e.g., [83].

The existing recovery algorithms for Σ∆ quantized compressed sensing measure-
ments rely on a two stage algorithm. In the first stage, the signal support is recovered
and in the second stage, the signal coefficients are estimated using the Sobolev dual
of the frame associated with the recovered support.
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4.2 Finding the Signal Support

Let q ∈Qm be the r-th order Σ∆ quantization of the compressed sensing measure-
ments y = Ax ∈ Rm associated with the sparse vector x ∈ Σk and the measurement
matrix A ∈ Rm×n. In order to preserve the codebook definition (42), we assume as
in Sec. 3 that the scaling of the entries of A is independent of m.

The goal of the first stage of the reconstruction algorithm is to recover T :=
supp(x). To that end, following [42] we will use a (standard) compressed sensing
decoder D : Rm→ RN that has uniform robustness guarantees for matrices with an
appropriate RIP constant. For such a decoder and an arbitrary scalar κ

x ∈ Σk and γ ∈ Rm : ‖γ‖2 ≤ κ
√

m =⇒ ‖D(Ax+ γ)− x‖2 ≤Cκ. (51)

For example, if D(Ax+ γ) is the output of an `1-minimization algorithm such as
Basis Pursuit DeNoising (BPDN), it satisfies (51) with constant C :=C(δ ,k) when
the matrix A (more precisely A/

√
m) satisfies an appropriate restricted isometry

property [26]. As the next proposition shows, robust decoders allow recovering the
support of a sparse vector when its smallest non-zero entry is above the error level.

Proposition 3. Let D be a compressed sensing decoder satisfying (51) and let x∈Σk
with T := supp(x). Define x̂ := D(Ax+ γ). If mini∈T |xi| > 2Cκ then the largest k
coefficients of x̂ are supported on T .

Proof. First, note that for all i ∈ T , (51) yields |x̂i− xi| ≤ Cκ . Since mini∈T |xi| >
2Cκ , the reverse triangle inequality gives |x̂i|>Cκ for all i in T . On the other hand,
(51) also ensures that |x̂i| ≤Cκ for all i ∈ T c.

A sharper version of this argument appears in [42] but Proposition 3 is sufficient
for our purposes. In particular, consider an rth order greedy Σ∆ quantization associ-
ated with a codebook Q having 2L elements. Applying such a scheme to Ax yields
a quantized vector q satisfying ‖q−Ax‖2 ≤ ∆

2 2r√m provided

L > ‖Ax‖∞/∆ +2r−1−1/2. (52)

Thus assuming that A/
√

m has appropriate RIP constants, Proposition 3 shows that
using a decoder satisfying (51), the support T of x ∈ Σk ⊂ Rn can be accurately
recovered provided |zi|> 2rC ∆ for all i ∈ T . What remains is to choose the number
of levels L in the codebook to satisfy (52); this in turn requires an estimate of ‖Ax‖∞.

To that end, we now consider subgaussian measurement matrices, i.e., matrices
whose entries are subgaussian random variables as defined below.

Definition 5. Let ξ be a Gaussian random variable drawn according to N (0,σ2).
If a random variable η satisfies P(|η |> t)≤ eP(|ξ |> t) for all t, then we say η is
subgaussian with parameter σ > 0.

Examples of subgaussian random variables include Gaussian, Bernoulli, and
bounded random variables, as well as their linear combinations. For matrices pop-
ulated with such subgaussian entries, the following proposition from [61] gives a
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bound on ‖Ax‖∞ when the non-zero entries of x are restricted to a fixed support T
so that Ax = ΦT xT for a frame Φ associated with the support.

Proposition 4. Let Φ̂ be a k×m subgaussian matrix with mean zero, unit variance,
and parameter σ , where k < m. Let Φ = 1√

m Φ̂ and fix α ∈ (0,1). Then, with prob-

ability at least 1− e−
1
4 m1−α kα

, we have for all m >C
1

1−α k and x ∈ Rk

‖ΦT x‖∞ ≤ e1/2(m
k

)− α
2 ‖x‖2. (53)

Here C is a constant that may depend on σ , but is independent of k and α .

Taking a union bound over all the
(n

k

)
submatrices of A of size m×k yields an identi-

cal uniform bound on ‖Ax‖∞, which holds for sparse vectors x with high probability,
provided m >Ck(logn)

1
1−α .

Thus an r-th order greedy Σ∆ scheme with sufficiently many quantization levels
allows the recovery of a sparse signal’s support from its compressed sensing mea-
surements. Equipped with this knowledge, we can estimate the signal coefficients
using the Sobolev dual of the frame associated with the recovered support.

4.3 Recovering the Signal Coefficients

We continue to consider Gaussian or subgaussian measurement matrices, now as-
suming that the support T of the signal x has been identified. Our goal is to ap-
proximate the coefficients xi, i ∈ T . With high probability, the matrix A/

√
m has the

restricted isometry property of order 2k and level δ2k ≤ 1/
√

2 provided one takes at
least on the order of k log(n/k) measurements. Then the matrix AT/

√
m restricted to

the columns indexed by T is close to an isometry and its rows hence form a frame.
Consequently, the measurement vector is the associated frame expansion of xT , and
q is the corresponding Σ∆ frame quantization.

As shown in Sec. 4.1, it is advantageous to reconstruct x from the r-th order Σ∆

quantization q of the measurement vector Ax using the Sobolev dual Ã(r)
T of AT , see

(48) and (49). A possible bound for the reconstruction error is then proportional to
‖Ã(r)

T Dr‖2→2. Thus to show a uniform recovery guarantee, one needs a bound for this
quantity which is uniform over all potential support sets T . In the initial work [42],
dealing with Gaussian compressed sensing matrices, the approach to proving such a
bound consisted of explicitly controlling the lowest singular value of D−rAT . Their
approach utilized the unitary invariance of the Gaussian measure to identify the
distribution of the singular values of the random matrix D−rAT with those of SD−rΨ ,
where SD−r is a diagonal matrix whose entries are the singular values of D−r, and
Ψ is a Gaussian matrix. This, coupled with bounds on the singular values of D−r,
allowed [42] to derive bounds that held with probability high enough to survive a
union bound over all

(n
k

)
Gaussian submatrices of A. In [61], this approach was
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extended to subgaussian matrices. Herein, to prove such a bound on ‖Ã(r)
T Dr‖2→2,

we follow the simpler, RIP-based approach presented in [37].
To that end, let E = UESEV T

E be the singular value decomposition (SVD) of
any matrix E (for some orthogonal matrices UE and VE ) where the matrix SE is
diagonal with (ordered) diagonal entries σ j(E). We denote also σmin(E) := σ1(E)
the smallest singular value of E. Then the following proposition (see, e.g., [42])
holds.

Proposition 5. There are positive constants C1(r) and C2(r), independent of m, such
that

C1(r)(m
j )

r ≤ σ j(D−r)≤C2(r)(m
j )

r, j = 1, . . . ,m. (54)

Denote by P̀ the `×m matrix that maps a vector to its first ` components. More-
over, denote by Σ̃k(A,D) ⊂ Σk the set of k-sparse signals x whose support can be
recovered from q with the decoder D as in Proposition 3. The following theorem
describes the reconstruction performance.

Theorem 6 ([37]). Let A ∈ Rm×n be a matrix such that for a fixed ` ≤ m, the `×n
matrix 1√

`
P̀ V T

D−r A has restricted isometry constant δk ≤ δ . Then the following holds

uniformly for all x ∈ Σ̃k(A,D).
If x has support T , q is the r-th order Σ∆ quantization of Ax, and x̂ := Ã(r)

T q, then

‖x− x̂‖2 ≤ ∆

C(r)
√

(1−δ )
(m
` )
−r+ 1

2 ,

where C(r) > 0 is a constant depending only on r and ∆ is the quantization step
size.

Proof. As the SVD of D−r provides D−r = UD−r SD−rV T
D−r , the smallest singular

value of D−rAT satisfies

σmin(D−rAT ) = σmin(SD−rV T
D−r AT )

≥ σmin(P̀ SD−rV T
D−r AT )

= σmin((P̀ SD−r PT
` )(P̀ V T

D−r AT ))

≥ σ`(D−r)σmin(P̀ V T
D−r AT ),

To bound σmin(P̀ V T
D−r AT ) uniformly over all support sets T of size k we simply note

that if 1√
`
P̀ V T

D−r Φ has restricted isometry constant δk ≤ δ then σmin(P̀ V T
D−r AT ) is

uniformly bounded from below by
√
`
√

1−δ . (55)

The theorem follows by applying (48), (54), (55) as

1
σmin(D−rAT )

‖u‖2 ≤ ∆

C(r)
√

(1−δ )
(m
` )
−r+ 1

2 (56)

ut
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The above theorem can be applied almost directly to Gaussian compressed sens-
ing matrices. If A is a Gaussian matrix with independent zero mean and unit variance
entries, then by rotation invariance so is the matrix P̀ V T

D−r A. Regarding the choice of
`, note from Theorem 6 that the smaller ` is, the better the bound. On the other hand
` has to be large enough for 1√

`
(P̀ V T

D−r Φ) to have the restricted isometry constant

δk ≤ δ . This prompts the choice `� k logn, as then 1√
`
(P̀ V T

D−r Φ) has the restricted
isometry constant δk < δ with high probability, as discussed in Chapter 1 (see, e.g.,
Theorem 1.5). In particular, if

m & k(logn)
1

1−α , α ∈ (0,1)

and
`� k logn

then
m
` � m

k logn = (m
k )

α ·
(

m

k(logn)
1

1−α

)1−α

& (m
k )

α

Applying Theorem 6 directly, we obtain

‖x− x̂‖2 . ∆(m
k )
−α(r− 1

2 ).

This essentially recovers the result in [42] and a similar, albeit more technical argu-
ment for subgaussian matrices, using either bounds on tail probabilities for quadratic
forms [44, 87] or bounds for suprema of chaos processes [59] recovers the analo-
gous result in [61].

To illustrate the advantage of using Σ∆ schemes for quantizing compressed
sensing measurements we conduct a numerical experiment with k-sparse signals
in Rn, as we vary the number of measurements m. We fix k = 10, n = 1000,
and the quantization step-size ∆ = 0.01. We draw m× n Gaussian matrices A for
m ∈ {100,200,400,800} and quantize the measurements Ax using scalar quanti-
zation and rth order Σ∆ schemes with r = 1,2,3. We then use the two-stage re-
construction method described herein to obtain an approximation x̂ of x using its
quantized measurements. Repeating this experiment 30 times, we compute the av-
erage of the reconstruction error ‖x− x̂‖2 for each of the quantization methods and
plot them against the oversampling ratio m/k in Fig. 10.

In summary, using Gaussian and subgaussian compressed sensing matrices re-
covery of sparse signals from their Σ∆ quantized measurements is possible. More
importantly, the reconstruction error decays polynomially in the number of mea-
surements and thus outperforms the (at best) linear error decay that can be achieved
with scalar quantization. This improvement comes at the cost of introducing mem-
ory elements, and feedback, into the quantization procedure.
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Fig. 10 Average errors over 30 experiments. The figure shows the reconstruction errors result-
ing from scalar quantization, using `1-minimization for reconstruction (dashed line). Also cor-
responding to scalar quantization, the figure shows the errors resulting from reconstructing via
the two-stage algorithm described herein (solid black line), using the canonical dual of the frame
corresponding to the recovered support in the second stage. It also shows the reconstruction errors
resulting from 1st, 2nd, and 3rd order Σ∆ quantization respectively. These errors decay as (m/k)−r

for r = 1,2,3 respectively, slightly outperforming the theoretical predictions presented here.

5 Discussion and Conclusion

Quantization is an essential component of any acquisition system, and, therefore, an
important part of compressive sensing theory and practice. While significant work
has been done in understanding the interaction of quantization and compressive
sensing, there are several open problems and questions.

One of the most interesting open problems is the interaction of quantization with
noise. While the discussion and references in Sec. 3.5 provides some initial results
and theoretical analysis, a comprehensive understanding is still missing. An under-
standing of the optimal bit allocation and the optimal quantizer design, uniform or
non-uniform scalar, or Σ∆ , given the noise level, as well as the robustness of the
reconstruction to noise and quantization is still elusive.

While Σ∆ can be used to improve the rate efficiency of compressive sensing,
compared to scalar quantization, the performance is still not comparable to the state-
of-the-art in conventional Σ∆ methods. For example, conventional Σ∆ quantization
of band-limited functions can achieve error that decays exponentially as the sam-
pling rate increases, not currently possible with existing compressive sensing Σ∆ .
Furthermore, the analysis in Sec. 4 does not hold for 1-bit quantization, often de-
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sirable in practical systems due to its simplicity. Such an extension has significant
practical importance.

Even with Σ∆ approaches, the rate efficiency of compressive sensing systems is
not ideal. As evident from the fundamental bounds in Sec. 2, compressive sensing
is not rate-efficient compared to classical methods such as transform coding. In oth-
ers word, while compressive sensing is very promising in building sensing systems
because it can significantly reduce the number of measurements and the sampling
burden, it is not a good data compression approach if the measurements have al-
ready been obtained and the achievable bit-rate is important. That said, due to the
intimate connection between frame quantization and quantization for compressed
sensing, promising results in the finite frames context, e.g., [48] can inform future
developments in compressed sensing.

The potential encoding simplicity of a compressive sensing system is very ap-
pealing. Acquiring generalized linear measurements and quantizing them can be
less complex than typical transform-coding approaches and much more attractive
in low-power and computationally-restricted sensing applications. The complexity
is shifted to the reconstruction, which, in many applications, can bear significantly
more computational complexity. Nevertheless, the rate inefficiency of compressive
sensing can be a barrier in such applications.

A number of promising approaches have been proposed to overcome this bar-
rier using modifications of the quantizer that produce non-contiguous quantization
regions [78, 16, 17, 57]. Initial theoretical analysis and experimental results are
promising. However, our understanding is still limited. One of the drawbacks of
such approaches is that the reconstruction is no longer convex and, therefore, not as
simple to provide guarantees for.

Alternatively, recent work on adaptive quantization strategies has shown that er-
ror decay exponential in the bit-rate can be achieved, even using a 1-bit quantizer,
at the cost of adaptivity in the measurements and – in contrast with the methods
presented in this chapter – significant computation at the encoder. Specifically, [5]
shows that adaptively choosing the threshold of a 1-bit quantizer allows the error to
decay exponentially with the number of measurements. The cost is that the thresh-
olds are updated by solving an `1 minimization problem, or running an iterative hard
thresholding scheme. It is thus interesting to quantify the tradeoff between compu-
tational complexity at the quantizer, and achievable reconstruction accuracy.

Another important aspect is that while the best recovery guarantees in com-
pressed sensing are obtained for Gaussian and subgaussian measurement matri-
ces, which are also mainly considered in this article, applications usually require
structured matrices, such as subsampled Fourier matrices, e.g., as a model for sub-
sampled MRI measurements [72], or subsampled convolution, e.g., as a model for
coded aperture imaging [73]. In both cases, when the subsampling is randomized,
near-optimal recovery guarantees are known for unquantized compressed sensing
[86, 59]. Combined with quantization, however, hardly anything is known for such
matrices. Such results would be of great importance to move the approaches dis-
cussed in this survey closer to the application scenarios.
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Quantization is also important when considering randomized embeddings, an
area of research intimately related to compressive sensing [4, 62]. Embeddings are
transformations that preserve the geometry of the space they operate on; reconstruc-
tion of the embedded signal is not necessarily the goal. They have been proven quite
useful, for example, in signal-based retrieval applications, such as augmented real-
ity, biometric authentication and visual search [70, 21, 85].

These applications require storage or transmission of the embedded signals, and,
therefore, quantizer design is very important in controlling the rate used by the em-
bedding. Indeed, significant analysis has been performed for embeddings followed
by conventional scalar quantization, some of it in the context of quantized com-
pressive sensing [54, 81, 82] or in the study of quantized extensions to the Johnson
Lindenstrauss Lemma [55, 70, 85, 49]. Furthermore, since reconstruction is not an
objective anymore, non-contiguous quantization is more suitable, leading to very
interesting quantized embedding designs and significant rate reduction [21]. In this
context, quantization can also provide to significant computation savings in the re-
trieval, leading to Locality Sensitive Hashing (LSH) and similar methods [2].
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10. J. Blum, M. Lammers, A. M Powell, and Ö. Yılmaz. Sobolev duals in frame theory and
Sigma-Delta quantization. J. Fourier Anal. Appl., 16(3):365–381, 2010.



Quantization and Compressive Sensing 41

11. T. Blumensath and M. Davies. Iterative hard thresholding for compressive sensing. Appl.
Comput. Harmon. Anal., 27(3):265–274, 2009.

12. B. G. Bodmann and V. I. Paulsen. Frame paths and error bounds for Sigma–Delta quantization.
Appl. Comput. Harmon. Anal., 22(2):176–197, 2007.

13. B. G. Bodmann, V. I. Paulsen, and S. A. Abdulbaki. Smooth frame-path termination for higher
order Sigma-Delta quantization. J. Fourier Anal. Appl., 13(3):285–307, 2007.

14. P. T. Boufounos. Quantization and Erasures in Frame Representations. D.Sc. Thesis, MIT
EECS, Cambridge, MA, January 2006.

15. P. T. Boufounos. Greedy sparse signal reconstruction from sign measurements. In Proc.
Asilomar Conf. on Signals Systems and Comput., Asilomar, California, Nov. 2009.

16. P. T. Boufounos. Hierarchical distributed scalar quantization. In Proc. Int. Conf. Sampling
Theory and Applications (SampTA), Singapore, May 2-6 2011.

17. P. T. Boufounos. Universal rate-efficient scalar quantization. IEEE Trans. Inform. Theory,
58(3):1861–1872, 2012.

18. P. T. Boufounos and R. G. Baraniuk. Quantization of sparse representations. In Rice Univer-
sity ECE Department Technical Report 0701. Summary appears in Proc. Data Compression
Conference (DCC), Snowbird, UT, March 27-29 2007.

19. P. T. Boufounos and R. G. Baraniuk. 1-bit compressive sensing. In Proc. Conf. Inform. Science
and Systems (CISS), Princeton, NJ, March 19-21 2008.

20. P. T. Boufounos and A. V. Oppenheim. Quantization noise shaping on arbitrary frame expan-
sions. EURASIP J Adv. Signal Proc., page 053807, 2006.

21. P. T. Boufounos and S. Rane. Efficient coding of signal distances using universal quantized
embeddings. In Proc. Data Compression Conference (DCC), Snowbird, UT, March 20-22
2013.

22. T. T. Cai and A. Zhang. Sparse representation of a polytope and recovery of sparse signals
and low-rank matrices. IEEE Trans. Inform. Theory, 60(1):122–132, 2014.

23. A. Calderbank and I. Daubechies. The pros and cons of democracy. IEEE Trans. Inform.
Theory, 48(6), 2002.

24. E. Candès and J. Romberg. Encoding the `p ball from limited measurements. In Proc. Data
Compression Conference (DCC), Snowbird, UT, March 28-30 2006.

25. E. Candès, J. Romberg, and T. Tao. Stable signal recovery from incomplete and inaccurate
measurements. Comm. Pure Appl. Math, 59(8):1207–1223, 2006.

26. E. J. Candès. The restricted isometry property and its implications for compressed sensing. C.
R. Acad. Sci., Ser. I, 346:589–592, 2008.

27. R. Chartrand and V. Staneva. Restricted isometry properties and nonconvex compressive sens-
ing. Inverse Problems, 24(3):1–14, 2008.

28. S. S. Chen, D. L. Donoho, and M. A. Saunders. Atomic Decomposition by Basis Pursuit.
SIAM Journal on Scientific Computing, 20(1):33–61, 1998.

29. E. Chou. Non-convex decoding for sigma delta quantized compressed sensing. In Proc. Int.
Conf. Sampling Theory and Applications (SampTA 2013), pages 101–104, Bremen, Germany,
2013.

30. P. L. Combettes and J-C Pesquet. Proximal splitting methods in signal processing. In Fixed-
point algorithms for inverse problems in science and engineering, pages 185–212. Springer,
2011.

31. W. Dai, H. V. Pham, and O. Milenkovic. Distortion-Rate Functions for Quantized Compres-
sive Sensing. Technical Report arXiv:0901.0749, 2009.

32. I. Daubechies and R. DeVore. Approximating a bandlimited function using very coarsely
quantized data: A family of stable sigma-delta modulators of arbitrary order. Ann. Math.,
pages 679–710, 2003.

33. M. A. Davenport, J. N. Laska, P. T. Boufounos, and R. G. Baraniuk. A simple proof that
random matrices are democratic. Technical report, Rice University ECE Department Technical
Report TREE-0906, Houston, TX, November 2009.

34. M. A. Davenport, J. N. Laska, J. Treichler, and R. G. Baraniuk. The pros and cons of com-
pressive sensing for wideband signal acquisition: Noise folding versus dynamic range. IEEE
Trans. Signal Proc., 60(9):4628–4642, 2012.



42 Petros T. Boufounos, Laurent Jacques, Felix Krahmer, and Rayan Saab
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