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ABSTRACT

Compressed Sensing (CS) is a new signal acquisition technique that allows sampling of sparse signal using
significantly fewer measurements than previously thought possible. On the other hand, a fusion frame is a new
signal representation method that uses collections of subspaces instead of vectors to represent signals. This work
combines these exciting new fields to introduce a new sparsity model for fusion frames. Signals that are sparse
under the new model can be compressively sampled and uniquely reconstructed in ways similar to sparse signals
using standard CS. The combination provides a promising new set of mathematical tools and signal models useful
in a variety of applications.

With the new model, a sparse signal has energy in very few of the subspaces of the fusion frame, although it
needs not be sparse within each of the subspaces it occupies. We define a mixed `1/`2 norm for fusion frames.
A signal sparse in the subspaces of the fusion frame can thus be sampled using very few random projections
and exactly reconstructed using a convex optimization that minimizes this mixed `1/`2 norm. The sampling
conditions we derive are very similar to the coherence and RIP conditions used in standard CS theory.
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1. INTRODUCTION AND BACKGROUND

Compressed Sensing (CS) has recently emerged as a very powerful field in signal processing, enabling the acqui-
sition or signals at rates much lower than previously thought possible. To achieve such performance, CS exploits
the structure inherent in many naturally occurring and man-made signals in the signal reconstruction process.
Specifically, CS uses classical signal representations and imposes a sparsity model on the signal of interest. The
sparsity model is combined with randomized acquisition and non-linear reconstruction.

Fusion frames are recently emerged mathematical structures that can better capture the richness of the
natural and man-made signals compared to traditionally used representations. In particular, fusion frames
generalize frame theory by using subspaces in the place of vectors as signal building blocks. Thus signals can be
represented as linear combinations of components that lie in particular, and often overlapping, signal subspaces.
Such a representation provides significant flexibility compared to classical frame representations.

In this paper we extend the concepts and methods of Compressed Sensing to Fusion Frames. In doing so
we demonstrate that it is possible to recover signals from underdetermined measurements if the signals lie only
on very few subspaces of the fusion frame. Our generalized model does not require that the signals are sparse
within each subspace.

Our ultimate motivation is to generalize the notion of sparsity to more general mathematical objects, such as
vector-valued data points.4 Toward that goal, we demonstrate that the generalization we present in this paper
encompasses joint sparsity models15,26 as a special case. Furthermore, it is itself a special case of block-sparsity
models,13 with significant additional structure that enhances existing results.

The rich structure of the fusion frames framework allows us to capture more complicated signal modes that
the simple sparse or compressible signals captured using standard compressive sensing techniques. Our results
are applicable in target detection and tracking, and in audio segmentation applications, just to name a few.
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In the remainder of this section we describe some possible applications and provide some background on
Compressed Sensing and on Fusion Frames. In Section 2 we formulate the problem and establish notation. We
further explore the connections with existing research in the field, as well as possible extensions. In Section 3 we
prove recovery guarantees using the coherence properties of the sampling matrix. In Section 4 we prove similar
guarantees using the restricted isometry properties (RIP) of the sampling matrix. We conclude with a discussion
of our results.

1.1 Applications

Although the development in this paper provides a general theoretical perspective, the principles and the methods
we develop are widely applicable. In particular, the special case of joint (or simultaneous) sparsity has already
been widely used in radar,19 sensor arrays,18 and MRI pulse design.28 In these applications a mixed `1/`2 norm
was used heuristically as a sparsity proxy.

The richness of Fusion Frames, however, allow the application of this work to other cases, such as target
recognition and music segmentation. The goal in such applications is to identify, measure and track targets that
are not well described by a single vector but by a whole subspace. In music segmentation, for example, each note
is not characterized by a single frequency, but by the subspace spanned by the fundamental frequency of the
instrument and its harmonics.10 Furthermore, depending on the type of instrument in use, certain harmonics
might or might nor be present in the subspace. Similarly, in vehicle tracking and identification, the subspace
of a vehicle’s acoustic signature depends on the type of vehicle, its engine and its tires.8 Note that in both
applications, there might be some overlap in the subspaces that distinct instruments or vehicles occupy.

Fusion frames are quite suitable for such representations. The subspaces defined by the particular instrument
or the particular tracked vehicle generate a fusion frame for the whole space. Thus the fusion frame serves as
a dictionary of targets to be acquired, tracked and identified. The fusion frame structure further enables the
use of sensor arrays to perform joint source identification and localization using far fewer measurements than a
classical sampling framework.

1.2 Compressed Sensing Background

Compressed Sensing (CS) is a recently emerged field in signal processing that enables signal acquisition using
very few measurements compared to the signal dimension, as long as the signal is sparse in some basis. It predicts
that a signal x ∈ RN with only k non-zero coefficients can be recovered from only n = O(k log(N/k)) suitably
chosen linear non-adaptive measurements, compactly represented using

y = Ax,y ∈ Rn,A ∈ Rn×N .

A necessary condition for exact signal recovery is that

Ax 6= 0 for all x 6= 0, ‖x‖0 ≤ 2k,

where the `0 ‘norm’, ‖x‖0 counts the number of non-zero coefficients in x. In this case recovery is possible using
the following combinatorial optimization,

x̂ = argmin x∈RN ‖x‖0 subject to y = Ax,

Unfortunately this is an NP-hard problem20 in general, hence becomes infeasible in high dimensions.

Exact signal recovery using computationally tractable methods can be guaranteed if the coherence of the
measurement matrix A is sufficiently small.4,25 The coherence of a matrix A with unit norm columns ai,
‖ai‖2 = 1, is defined as

µ = max
i 6=j

|〈ai,aj〉| ,

Exact signal recovery is also guaranteed if A obeys a restricted isometry property (RIP) of order 2k, i.e., if there
exists a constant δ2k such that for all 2k-sparse signals x

(1− δ2k)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δ2k)‖x‖22.



If the coherence of A is low or if A has a small RIP constant (see below), then the following convex optimization
exactly recovers the signal form the measurement vector y,5

x̂ = argmin x∈RN ‖x‖1 subject to y = Ax.

A surprising result is that random matrices with sufficient number of rows can achieve low coherence and low
RIP constants with overwhelming probability.

A large body of literature extends these results to measurements of signals in the presence of noise, to
signals that are not exactly sparse but compressible,5 to several types of measurement matrices6,21–23,27 and to
measurement models beyond simple sparsity.2

1.3 Background on Fusion Frames

Fusion Frames are generalizations of frames that provide a richer description of signal spaces. A Fusion Frame
is a collection of subspaces Wj ⊆ RM and associated weights vj , compactly denoted using (vj ,Wj)N

j=1, that
satisfies

A‖f‖22 ≤
N∑

j=1

v2
j ‖Pj(f)‖22 ≤ B‖f‖22

for some universal fusion frame bounds 0 < A ≤ B < ∞ and for all f ∈ RM , where Pj(·) denotes orthogonal
projection to the subspaceWj . We use mj to denote the dimension of the jth subspaceWj , j = 1, . . . , N . A frame
is a special case of a fusion frame in which all the subspaces Wj are one-dimensional (i.e., mj = 1, j = 1, . . . , N),
and the weights vj are the norms of the frame vectors.

The generalization to fusion frames allows us to capture interactions between frame vectors to form specific
subspaces that are not possible in classical frame theory. Similar to classical frame theory, we call the fusion
frame tight if the frame bounds are equal, A = B. If the fusion frame has vj = 1, j = 1, . . . ,N, we call it a
unit-norm fusion frame.

Using the fusion frame we define the Hilbert space H as

H = {(xj)N
j=1 : xj ∈ Wj for all j} ⊆ RM×N .

Finally, we use Uj ∈ RM×mj to denote a known but otherwise arbitrary left-orthogonal basis forWj , j = 1, . . . , N .
That is UT

j Uj = Imj , where Imj is the mj ×mj identity matrix, and UjUT
j = Pj .

The fusion frame mixed `q,p norm is defined as

∥∥(xj)N
j=1

∥∥
q,p
≡

 N∑
j=1

(vj‖xj‖q)
p

1/p

, (1)

where {vj} are the frame weights. When the q parameter of the norm is ommited, it is implied to be q = 2:

∥∥(xj)N
j=1

∥∥
p
≡

 N∑
j=1

(vj‖xj‖2)p

1/p

.

Furthermore, for a sequence c = (cj)N
j=1, cj ∈ Rmj , we similarly define the mixed norm

‖c‖2,1 =
N∑

j=1

‖cj‖2.

The `0–‘norm’ (which is actually not even a quasi-norm) is defined as

‖x‖0 = #{j,xj 6= 0}.



2. SPARSE RECOVERY PROBLEM
We now consider the following scenario. Let x0 = (x0

j )
N
j=1 ∈ H, and assume that we only observe n linear

combinations of those vectors, i.e., there exist some scalars aij satisfying that ‖(aij)i‖2 = 1 for all j such that
we observe

y = (yi)n
i=1 =

 N∑
j=1

aijx0
j

n

i=1

∈ K, (2)

where K denotes the Hilbert space

K = {(yi)n
i=1 : yi ∈ RM for all i = 1, . . . , n}.

We first notice that (2) can be rewritten as

y = AIx0, where AI = (aijIM )1≤i≤n, 1≤j≤N ,

i.e., AI is the matrix consisting of the blocks aijIM .

We now wish to recover x0 from those measurements. If we impose conditions on the sparsity of x0, it is very
suggestive to consider the following minimization problem,

x̂ = argmin x∈H‖x‖0 subject to
N∑

j=1

aijxj = yi for all i = 1, . . . , n.

Using the matrix AI, we can rewrite these optimization problems as

(P0) x̂ = argmin x∈H‖x‖0 subject to Ax = y.

However, this problem is NP-hard,20 and therefore – as proposed in numerous publications and initiated by9 – we
will employ `1 minimization techniques. This leads to the investigation of the following minimization problem,

(P1) x̂ = argmin x∈H‖x‖1 subject to AIx = y.

Since we minimize over all x = (xj)N
j=1 ∈ H and certainly Pjxj = xj by definition, we wish to remark that we

can rewrite this minimization problem as

x̂ = argmin x∈H‖x‖1 subject to APx = y,

where
AP = (aijPj)1≤i≤n, 1≤j≤N . (3)

However, problem (P1) bears difficulties to implement, since minimization runs over H. It is easy to see that
in fact (P1) is equivalent to the optimization problem

(P r
1 ) (ĉj)j = argmin cj∈Rmj ‖(Ujcj)N

j=1‖1 subject to AI(Ujcj)j = y, (4)

where then x̂ = (Uj ĉj)N
j=1. This particular form ensures that the minimizer lies in the collection of subspaces

(Wi)i while minimization is performed over cj ∈ Rmj ,j = 1, . . . , N , hence feasible.

Finally, by rearranging (4), the optimization can be rewritten using matrix-only notation

(P0) ĉ = argmin c‖c‖0 subject to Y = AU(c)

and
(P1) ĉ = argmin c‖c‖2,1 subject to Y = AU(c),

in which

U(c) =

 cT
1 UT

1
...

cT
NUT

N

 ∈ RN×M , Y =

 y1
...

yn

 ∈ Rn×M , (A)ij = aij ∈ Rn×N , cj ∈ Rmj , and yi ∈ RM .

Hereby, we additionally used that ‖Ujcj‖2 = ‖cj‖2 by (left) orthogonality of Uj . We follow this notation for
the remainder of the paper.



2.1 Extensions

Several extensions of this formulation and the work in this paper are possible. First, the analysis we provide is on
the exactly sparse, noiseless case. As with classical compressed sensing, it is possible to accommodate sampling
in the presence of noise. It is also natural to consider the extension of this work to sampling signals that are not
k-sparse in a fusion frame representation but can be very well approximated by a k-sparse representation.

The richness of fusion frames allows us to consider richer sampling matrices. Specifically, it is possible to
consider sampling matrices with matrix entries, each operating on a different subspace of the fusion frame. Such
extensions open the use of `1 methods to general vector-valued mathematical objects and to the general problem
of sampling such objects.4 Of course such extensions are beyond the scope of this paper.

We should also note that in this paper we only consider a worst-case analysis. Such an analysis is quite
pessimistic in practice. An average case analysis, similar to the one in,14 can be more informative for several
practical applications. We defer the average case analysis to a future publication.

2.2 Relation with Previous Work

A special case of the problem above appears when all subspaces (Wj)N
j=1 are equal and also equal to the ambient

space Wj = RM for all j. Thus, Pj = IM and the observation setup of Eq. (2) is identical to the matrix product

Y = AX,

where

X =

 x1
...

xN

 ∈ RN×M .

This special case is the same as the well studied joint-sparsity setup of3,15,16,26 in which a collection of M sparse
vectors in RN is observed through the same measurement matrix A, and the recovery assumes that all the vectors
have the same sparsity structure. The use of mixed `1/`2 optimization has been proposed and widely used in
this case.

Our formulation is also special case of the bock sparsity problem,13 where we impose a particular structure
on the measurement matrix A. This relationship is already known for the joint sparsity model, which is also a
special case of block sparsity. The fusion frames formulation we examine here specializes block sparsity problems
and generalizes joint sparsity. As we discuss in the introduction, the fusion frames structure provides significant
structure to enhance the existing block-sparsity results, especially in the form of the fusion frame coherence,
which we discuss in the next section.

3. SPARSE RECOVERY VIA COHERENCE BOUNDS

In this section we derive conditions on c0 and A so that c0 is the unique solution of (P0) as well as of (P1).
Our approach generalizes the notion of mutual coherence, a commonly used measure of morphological difference
between the vectors of a measuring matrix. An excellent survey of the role of mutual coherence in sparse
representations can be found in.4

3.1 Fusion Coherence

First, we require some analog of mutual coherence. In particular, we need to consider an adaptation of this
notion to our more complicated situation involving the angles between the subspaces generated by the bases Uj ,
j = 1, . . . , N . In other words, here we face the problem of recovery of vector-valued (instead of scalar-valued)
components. This leads to the following definition.

Definition 3.1. The fusion coherence of a matrix A ∈ Rn×N with normalized ‘columns’ (aj = a·,j)N
j=1 and a

collection of orthogonal projection matrices (Pi)n
i=1 in RM×M is given by

µf = µf (A, (Pi)n
i=1) = max

j 6=k
[|〈aj ,ak〉| · ‖PjPk‖2] .



Since the Pj ’s are projection matrices, we can also rewrite the definition of fusion coherence as

µf = max
j 6=k

[
|〈aj ,ak〉| · |λmax(PjPk)|1/2

]
with λmax denoting the largest eigenvalue, simply due to the fact that the eigenvalues of PkPjPk and PjPk

coincide. Let us also remark that |λmax(PjPk)|1/2 equals the largest absolut value of the cosines of the principle
angles between Wj and Wk.

3.2 Main Result

We first formulate the main result of this section using the new notions previously developed.

Theorem 3.2. Let A ∈ Rn×N with normalized columns (aj)N
j=1, let (Pi)n

i=1 be a collection of orthogonal
projection matrices in RM×M , and let Y ∈ Rn×M . If there exists a solution c0 of the system AU(c) = Y
satisfying

‖c0‖0 <
1
2
(1 + µ−1

f ), (5)

then this solution is the unique solution of (P0) as well as of (P1).

Before we continue with the proof, let us for a moment consider the following special cases of this theorem.

3.2.1 Case M = 1

In this case the projection matrices equal 1, and hence the problem reduces to the classical recovery problem
Ax = y with x ∈ RN and y ∈ Rn. Thus our result reduces to the result obtained in,11 and the fusion coherence
coincides with the commonly used mutual coherence, i.e., µf = maxj 6=k |〈aj ,ak〉|.

3.2.2 Case Pi = IM for all i

In this case we are in the general ‘joint sparsity situation’, where we recover a matrix X0 ∈ RN×M from
knowledge of AX0 ∈ Rn×M without any constraints on the X0 – before we had the constraint that X0 is
required to be of the form U(c0). Again fusion coherence coincides with the commonly used mutual coherence,
i.e., µf = maxj 6=k |〈aj ,ak〉|.

3.2.3 Case Wi ⊥ Wj for all i, j

Here the fusion coherence becomes 0. And this is also the correct answer, since in this case there exists precisely
one solution of the system AU(c) = Y for a given Y. Hence the condition (5) becomes meaningless.

3.2.4 General Case

In the general case we can consider two scenarios: either we are given the subspaces (Wi)i or we are given the
measuring matrix A. In the first situation we face the task of choosing the measuring matrix such that µf is as
small as possible. Intuitively, we would choose the vectors (aj)j so that a pair (ai,aj) has a large angle if the
associated two subspaces (Wi,Wj) have a small angle, hence balancing the two factors and try to reduce the
maximum. In the second situation, we can use a similar strategy now designing the subspaces (Wi)i accordingly.



3.3 Proof of Theorem 3.2

We first derive a reformulation of the equation AU(c) = Y, which will turn out to be useful in proving Theorem
3.2. Setting

AP = (aijPj)1≤i≤n, 1≤j≤N

and defining the map ϕk : Rk×M → RkM , k ≥ 1 by

ϕk(Z) = ϕk

 z1
...
zk

 = (z1 . . . zk)T ,

i.e., the concatenation of the rows. Then it is easy to see that

AU(c) = Y ⇔ APϕN (U(c)) = ϕn(Y). (6)

We now split the proof of Theorem 3.2 into two lemmata, and wish to remark that many parts are closely
inspired by the techniques employed in.11

We first show that c0 satisfying (5) is the unique solution of (P1).

Lemma 3.3. If there exists a solution U(c0) ∈ RN×M of the system AU(c) = Y with c0 satisfying (5), then c0

is the unique solution of (P1).

Proof. In the following we will refer to

supp(U(c0)) = {j ∈ {1, . . . , N} : (c0
j )

T UT
j 6= 0}

as the support of U(c0) (as well as of c0) and denote it by S. Let c1 be an arbitrary solution of the system
AU(c) = Y, and set

h = c0 − c1.

Denoting by a subscript S a vector restricted to the set S, we obtain

‖c0‖2,1 − ‖c1‖2,1 = ‖c1
Sc‖2,1 + ‖c1

S‖2,1 − ‖c0
S‖2,1 ≥ ‖hSc‖2,1 − ‖hS‖2,1.

We have to show that this term is greater than zero for any h 6= 0, which is the case provided that

‖hSc‖2,1 > ‖hS‖2,1 (7)

or, in other words,
1
2‖h‖2,1 > ‖hS‖2,1, (8)

which we next aim to prove.

Since h satisfies AU(h) = 0, by using the reformulation (6), it follows that

APϕN (U(h)) = 0.

This implies that
A∗

PAPϕN (U(h)) = 0.

Defining aj by aj = (aij)i for each j, the previous equality can be computed to be

(〈ai,aj〉PiPj)ijϕN (U(h)) = 0.

Recall that we have required the vectors aj to be normalized. Hence, for each i,

Uihi = −
∑
j 6=i

〈ai,aj〉PiPjUjhj .



Since ‖Uihi‖2 = ‖hi‖2 for any i, this gives

‖hi‖2 ≤
∑
j 6=i

|〈ai,aj〉| · ‖PiPj‖2‖hj‖2 ≤ µf (‖h‖2,1 − ‖hi‖2),

which implies
‖hi‖2 ≤ (1 + µ−1

f )−1‖h‖2,1.

Thus, we have
‖hS‖2,1 ≤ #(S) · (1 + µ−1

f )−1‖h‖2,1 = ‖c0‖0 · (1 + µ−1
f )−1‖h‖2,1.

Concluding, (5) and (8) show that h satisfies (8) unless h = 0, which implies that c0 is the unique minimizer of
(P1) as claimed.

Using Lemma 3.3 it is easy to show the following lemma. We omit the proof in the interest of space.

Lemma 3.4. If there exists a solution U(c0) ∈ RN×M of the system AU(c) = Y with c0 satisfying (5), then c0

is the unique solution of (P0).

We observe that Theorem 3.2 now follows immediately from Lemmata 3.4 and 3.3.

4. SPARSE RECOVERY USING THE RESTRICTED ISOMETRY PROPERTY (RIP)

In this section we consider an alternative condition for sparse recovery using the restricted isometry property
(RIP) of the sampling matrix. This property on the sampling matrix, first introduced in,5 complements the
mutual coherence conditions and is often preferred in the literature.

Definition 4.1. A matrix A ∈ Rn×N satisfies a restricted isometry property (RIP) of order k if there exists
constant δk such that for all x ∈ RN , ‖x‖0 ≤ k

(1− δk)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δk)‖x‖22.

Note that this is the classical definition of the RIP, used in the classical CS literature to measure a single
sparse vector. However, we use that property to recover signals that have a sparse fusion frame representation.
Specifically, in the remainder of this section we demonstrate that if our matrix A satisfies the RIP, we can recover
a k-sparse signal X ∈ H from its fusion frame measurements Y = AX by solving the `1 minimization (P1).
Notice that we follow the line of proof from,5 but are required to make changes to adapt it to our situation.

We first show that imposing the RIP condition on the matrix A implies a form of RIP we require for our
modified situation.

Lemma 4.2. Suppose that the matrix A ∈ Rn×N satisfies the RIP of order k with constant δk. Then

(1− δk)‖c‖22,2 ≤ ‖AU(c)‖22,2 ≤ (1 + δk)‖c‖22,2

for all c satisfying ‖c‖0 ≤ k.

Theorem 4.3. Let A ∈ Rn×N with normalized columns (aj)N
j=1, and suppose that it satisfies k-RIP with k such

that δ3k + 3δ4k < 2. Let (Pi)n
i=1 be a collection of projection matrices in RM×M , and let Y ∈ Rn×M . If there

exists a solution c0 of the system AU(c) = Y, then this solution is both the unique solution of (P0) and (P1).

Proof. Let the support of U(c0) be denoted by S, set |S| = k, and define h := c1− c0, where c1 is a solution
to the system. We then partition the indexing set {1, . . . , N} into subsets S`, ` = 1, . . . , ρ−1 · (N/k− 1) for some
ρ to be chosen later such that

(i) |S`| = ρ · k for all `,

(ii) {1, . . . , N} = S ∪
⋃

` S`,

(iii) ‖hj1‖2 ≥ ‖hj2‖2 if and only if j1 ∈ S`1 and j2 ∈ S`2 with `1 ≤ `2.



We would like the reader to note that this selection according to the norms of the elements hj of h = (hj)j

belonging to the different fusion frame subspaces differs from,5 since here we are concerned with sparsity of
objects consisting of vectors.

With this partition at hand we now proceed along the lines of5 as follows: Defining S̃ := S ∪ S1, noting that
the j largest value of (‖hj‖22)j∈Sc is ≤ ‖1Sch‖21/j, and recalling (7), we obtain

‖1S̃ch‖22 ≤ ‖1Sch‖21
N∑

j=ρ·k+1

1/j2 ≤ ‖1Sch‖21/(ρ · k) ≤ ‖1Sh‖21/(ρ · k) ≤ ‖1Sh‖22/ρ.

This implies
‖h‖22 ≤ (1 + ρ)‖1S̃h‖

2
2. (9)

Next, observing that for j ∈ S`+1 we have ‖hj‖22 ≤ ‖1S`
h‖1 · (ρ/k), it follows that∑

`≥2

‖1S`
h‖2 ≤

∑
`≥1

‖1S`
h‖1 ·

√
ρ/k ≤ ‖1Sh‖1 ·

√
ρ/k ≤ √

ρ · ‖1Sh‖2. (10)

Now, we use the RIP-property and (10) to obtain

‖AU(h)‖2 = ‖AU(1S̃h) +
∑
`≥2

AU(1S`
h)‖2

≥ ‖AU(1S̃h)‖2 −
∑
`≥2

‖AU(1S`
h)‖2

≥
√

1− δ(1+1/ρ)k‖1S̃h‖2 −
√

1 + δ(k/ρ)

∑
`≥2

‖1S`
h‖2 (11)

≥
(√

1− δ(1+1/ρ)k −
√

ρ · (1 + δ(k/ρ))
)
‖1S`

h‖2.

Setting Cρ,k =
√

1− δ(1+1/ρ)k −
√

ρ · (1 + δ(k/ρ)), applying (9), and the fact that

‖AU(h)‖2 ≤ ‖AU(c1)−Y‖2 + ‖AU(c0)−Y‖2 = 0,

yields
‖h‖2 =

√
1 + ρ‖1S̃h‖2 ≤ (

√
1 + ρ)/Cρ,k · ‖AU(h)‖2 = 0.

The proof is finished by noticing that we require Cρ,k > 0 for the last argument to be valid, and choosing ρ = 1/3.

Of course, it is possible to extend this proof in a similar manner to5 such that we can accommodate mea-
surement noise and signals that are well approximated by sparse fusion frame representation. We defer this
generalization to a future paper.

5. CONCLUSIONS AND DISCUSSION

Need to fill this in.

Main conclusions:

-FFs are very powerful in describing sparsity and structure.

-Standard CS results extend to FFs in very nice way

-At the current state mutual coherence provides a better understanding in terms of the FF properties.
Incorporating the projections into the RIP would be desirable

-Our analysis is worst case. The average case provides significant more insight, but we defer that for a future
publication.
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