Kernel Machine Classification Using Universal Embeddings

Petros T. Boufounos and Hassan Mansour Mitsubishi Electric Research Laboratories, Cambridge, MA 02139, USA, {petrosb,mansour}@merl.com

Abstract: Visual inference over a transmission channel is becoming an important problem in a variety of applications where, low latency and bit-rate consumption are often critical performance metrics, making data compression necessary. In this paper, we examine feature compression for support vector machine (SVM)-based inference using quantized randomized embeddings.

Universal Embeddings for Kernel Machines

We consider universal embeddings [1], namely transformations of the form $\phi(\mathbf{x}) = Q(\mathbf{A}\mathbf{x} + \mathbf{e})$, where $\mathbf{A} \in \mathbb{R}^{M \times N}$ is a randomly generated matrix with i.i.d. standard normal entries, $\mathbf{e} \in \mathbb{R}^M$ is a random dither with elements drawn from an i.i.d. distribution uniform in $[0, \Delta]$, Q(y) is a non-monotonic scalar quantizer applied element-wise to its vector input, mapping y to 1 if $y \in [2k, 2k + 1)$ and to -1 otherwise, Δ is a scaling parameter, and $\mathbf{x} \in \mathbb{R}^N$ is the vector being embedded—typically a feature vector or a signal to be classified. Universal embeddings have been shown to satisfy

$$g\left(\left\|\mathbf{x} - \mathbf{x}'\right\|_{2}\right) - \tau \le d_{H}\left(\phi(\mathbf{x}), \phi(\mathbf{x}')\right) \le g\left(\left\|\mathbf{x} - \mathbf{x}\right\|_{2}\right) + \tau,\tag{1}$$

with overwhelming probability, where τ decreases as $1/\sqrt{M}$, $d_H(\cdot, \cdot)$ is the Hamming distance of the embedded signals and g(d) is the map

$$g(d) = \frac{1}{2} - \sum_{i=0}^{+\infty} \left(\pi(i+1/2)\right)^{-2} e^{-\left(\frac{\pi(2i+1)d}{\sqrt{2\Delta}}\right)^2} \approx \frac{d}{\Delta} \sqrt{\frac{2}{\pi}}, \text{ if } d \le \frac{\Delta}{2} \sqrt{\frac{\pi}{2}}, \text{ or } 0.5 \text{ otherwise.}$$
(2)

We demonstrate that SVM kernels based on universal embeddings are very good approximations of radial basis function (RBF) kernels commonly used in classification. Thus, embedding features to a lower dimensional space is equivalent to using the SVM kernel trick with a kernel that approximates an RBF kernel.

Proposition. Let $\phi(\mathbf{x}) : \mathbb{R}^N \to \{-1, 1\}^M$ be a mapping function defined as above, with $\mathbf{q} = \phi(\mathbf{x})$. The kernel function $K(\mathbf{x}, \mathbf{x}')$ given by $K(\mathbf{x}, \mathbf{x}') = \frac{1}{2M} \mathbf{q}^T \mathbf{q}'$ is shift invariant and approximates the radial basis function $K(\mathbf{x}, \mathbf{x}') \approx \frac{1}{2} - g(||\mathbf{x} - \mathbf{x}'||_2)$, with g(d), as defined in (2). Furthermore, this RBF approximates the Gaussian RBF.

Our experimental results on an 8-class image database using histogram-of-gradients (HOG) features demonstrate that universal embeddings achieve 50% rate reduction over scalar quantization of the feature vectors, while maintaining the same inference performance.

References

 P. T. Boufounos and S. Rane, "Efficient coding of signal distances using universal quantized embeddings," in *Proc. Data Compression Conference (DCC)*, Snowbird, UT, March 20-22 2013.