
Universal Embeddings For Kernel Machine
Classification

Petros T. Boufounos and Hassan Mansour
Mitsubishi Electric Research Laboratories, Cambridge, MA 02139,

{petrosb,mansour}@merl.com

Abstract—Visual inference over a transmission channel is
increasingly becoming an important problem in a variety of
applications. In such applications, low latency and bit-rate
consumption are often critical performance metrics, making
data compression necessary. In this paper, we examine feature
compression for support vector machine (SVM)-based inference
using quantized randomized embeddings. We demonstrate that
embedding the features is equivalent to using the SVM kernel
trick with a mapping to a lower dimensional space. Furthermore,
we show that universal embeddings—a recently proposed quan-
tized embedding design—approximate a radial basis function
(RBF) kernel, commonly used for kernel-based inference. Our
experimental results demonstrate that quantized embeddings
achieve 50% rate reduction, while maintaining the same inference
performance. Moreover, universal embeddings achieve a further
reduction in bit-rate over conventional quantized embedding
methods, validating the theoretical predictions.

I. INTRODUCTION

Visual inference applications are increasingly adopting a
client/server model, in which inference is performed over
a transmission channel by a remote server. For example,
augmented reality, visual odometry, and scene understanding
are some example applications which are often performed
remotely, sometimes over the cloud. For the success of most of
these applications, latency and bit-rate consumption are critical
problems. Thus, efficient and low-complexity compression of
the transmitted signals is essential for their operation.

Most visual inference systems operate by extracting visual
features, such as the well-established SIFT, SURF, or HOG
features [1]–[3], among many others. However, these features
may sometimes consume more bandwidth than a compressed
image, making them ill-suited for use over a transmission
channel. Moreover, the complexity of image compression may
introduce significant latency and complexity in the system.

Recently it was shown, in the context of Nearest Neigh-
bor (NN)-based inference, that visual features can be com-
pressed to a rate much lower than the underlying image using
Locality-Sensitive-Hashing (LSH) based schemes—essentially
randomized embeddings followed by 1-bit quantization [4],
[5]. A more careful analysis of the properties of randomized
embeddings, when combined with scalar quantization, demon-
strated that carefully balancing the quantizer accuracy with the
dimensionality of the random projections can further reduce
the rate by more than 33% [6], [7]. A further 33% gain can
be obtained by replacing the scalar quantizer with a universal
scalar quantizer [8], [9]. The resulting universal embeddings
only represent a range of signal distances and can be tuned to

represent only the range of distances necessary for NN-based
computation, at a significant gain in the bit-rate.

In this paper we examine quantized embeddings in the
context of support vector machine (SVM)-based inferences.
We demonstrate that using universal embeddings to encode
features for an SVM classifier approximates a particular radial
basis function (RBF) kernel which, in turn, is a good approx-
imation for the commonly used and very successful Gaussian
RBF kernel. In particular, the bit-rate determines the quality of
the approximation. Our experiments using HOG features in an
example multiclass image classification task demonstrate that
randomized embeddings followed by appropriately designed
scalar quantization significantly reduces the bit-rate required
to code the features while maintaining high SVM-based infer-
ence accuracy. Furthermore, universal embeddings can further
improve the classification accuracy while reducing the bit-rate.

The paper is organized as follows. In the next section, we
present an overview of the quantized embeddings used in this
paper as well as a brief summary of SVM-based classification.
Section III discusses how embedding design affects their dis-
tance preserving performance, and highlights how randomized
embeddings can be viewed as approximating RBF kernels in
the context of kernel-based inference. Section IV presents
our experimental investigation which validates expectations
stemming from the theoretical discussion.

II. BACKGROUND OVERVIEW

A. Support Vector Machines

Support vector machines (SVMs) are binary linear clas-
sifiers used in supervised learning problems that identify
separating hyperplanes in a training data set. Given a training
set S = {(x(i), z(i), i = 1, . . . ,m} of data points x(i) ∈ RN
and binary labels z(i) ∈ {−1,+1}, the SVM training problem
can be cast as that of finding the hyperplane identified by
(w, b) by solving

min
w∈RN ,b∈R

1

2
‖w‖22 s.t. z(i)(wTx(i) + b) ≥ 1, i = 1, . . . ,m.

(1)
Problem (1) is commonly reformulated and solved in its
unconstrained form given by

min
w∈RN ,b∈R

1

m

m∑
i=1

`(w, b;x(i), z(i)) +
λ

2
‖w‖22, (2)



where `(w, b;x(i), z(i)) is the hinge loss function

`(w, b;x(i), z(i)) = max{0, 1− z(i)(wTx(i) + b)}, (3)

and λ is a regularization parameter.
In some applications, it may be beneficial to find separating

hyperplanes in a higher dimensional lifting space of the
data. Let ψ(·) be a nonlinear lifting function from RN to
some higher dimensional space. Any positive semi definite
function K(x,u) defines an inner product and a lifting ψ(·)
so that the inner product between lifted datapoints can be
quickly computed using K(x,u) = 〈ψ(x), ψ(u)〉. Since the
SVM training algorithm can be written entirely in terms of
inner products 〈x,u〉, we can replace all inner products with
K(x,u) without ever lifting the data using ψ(·), a techniques
known as the kernel trick.

In some cases, it is possible to compute or approximate
certain kernels by explicitly mapping the data to a low-
dimensional inner product space. For example, Rahimi and
Recht [10] propose a randomized feature map φ(·), that
transforms the data into a low-dimensional Euclidean space.
Using φ : RN → RM , M � N, as the feature map, the kernel
K(x,u) can be computed in the lower-dimensional space as

K(x,u) = φ(x)Tφ(u). (4)

Such randomized feature maps have strong connections to the
field of randomized embeddings, which we describe next.

B. Randomized Embeddings

An embedding is a mapping of a set S to another set
V that preserves some property of S in V . Embeddings
enable algorithms to operate on the embedded data, allowing
processing and inference, so long as the processing relies on
the preserved property.

In particular, Johnson-Lindenstrauss (JL) embed-
dings [11]—the most celebrated example—preserve the
distances between pairs of signals. The JL lemma states that
one can design an embedding f(·) such that for all pairs of
signals x,x′ ∈ S ⊂ RN , their embedding, y = f(x) and
y′ = f(x′), with y,y′ ∈ RM satisfies

(1− ε)‖x− x′‖22 ≤ ‖y − y′‖22 ≤ (1 + ε)‖x− x′‖22 (5)

for some ε, as long as M = O
(

logP
ε2

)
, where P is the number

of points in S. Later work further showed that the JL map can
be realized using a linear map f(x) = Ax, where the matrix
A can be generated using a variety of random constructions
(e.g., [12], [13]).

The main feature of the JL lemma is that the embedding
dimension M depends logarithmically only on the number
of points in the set, and not on its ambient dimension N .
Thus, the embedding dimension can typically be much lower
than the ambient dimension, with minimal compromise on the
embedding fidelity, as measured by ε. Any processing based on
distances between signals—which includes the majority of in-
ference methods—can operate on the much lower-dimensional
space V .

1Δ" 2Δ" 3Δ"

-1Δ"-2Δ"-3Δ"

x!

Q(x)"

1Δ"

2Δ"

3Δ"

-1Δ"

-3Δ"

-2Δ"

-4Δ"

4Δ"-S"
S"

…" …"

0"

1Δ" 2Δ" 3Δ"-1Δ"-2Δ"-3Δ" x!

Q(x)"

1"

-1"
d

g(d) Johnson-Lindendstauss embeddings

Universal Embeddings

D00

(a) (b) (c)

Fig. 1. (a) Conventional 3-bit (8 levels) scalar quantizer with saturation level
S = 4∆. (b) Universal scalar quantizer. (c) The embedding map g(d) for
JL-based embeddings (blue) and for universal embeddings (red).

C. Quantized JL Embeddings

While dimensionality reduction through embedding can
be very useful in reducing the complexity of processing or
inference algorithms, in a number of applications the desirable
goal is also to reduce the transmission rate before processing.
In such applications, quantized embeddings have been shown
to be highly successful at preserving Euclidean distances
while significantly reducing the bit-rate requirements. Specifi-
cally, [6] considers a finite-rate uniform scalar quantizer Q(·),
as shown in Fig. 1(a), with stepsize ∆ = S2−B+1, where S is
the saturation level of the quantizer, and B the number of bits
per coefficient. Using such a quantizer, a JL map f(x) = Ax
can be quantized to q = Q(Ax) and satisfy

(1− ε)‖x− x′‖2 − S2−B+1

≤ ‖q− q′‖2 ≤
(1 + ε)‖x− x′‖2 + S2−B+1, (6)

assuming the saturation level S is set such that saturation
does not happen or is negligible. This quantized JL (QJL)
embedding uses a total rate of R = MB bits.

The design of QJL embeddings exhibits a trade-off between
the number of bits B per coefficient and the embedding space
dimension M , i.e., the number of coefficients. For a fixed rate
R, a larger B and smaller M will increase the error due to the
JL embedding, ε, while a larger M and smaller B will increase
the error due to quantization. The design choice should balance
the two errors. For example, the optimal B was experimentally
determined to be 3 or 4 for NN-based inference examples
in [6], [7]. This is not a universal optimum; the optimal B
depends on the application.

D. Universal Embeddings

More recently, [8], [9] introduced an alternative approach
using a non-monotonic quantizer combined with dither instead
of a finite-range uniform one. This approach only preserves
distances up to a radius, as determined by the embedding
parameters.

Universal embeddings exhibit a different design trade-off.
Given a fixed total rate, R, the quality of the embedding
depends on the range of distances it is designed to preserve. At
a fixed bit-rate, increasing the range of preserved distances also
increases the ambiguity of how well the distance are preserved.

Specifically, universal embeddings use a map of the form

q = Q(Ax + w), (7)



where A ∈ RM×N is a matrix with entries drawn from an i.i.d.
standard normal distribution, Q(·) is the quantizer, and w ∈
RM is a dither vector with entries drawn from a [0,∆] uniform
i.i.d. distribution. An important difference with conventional
embeddings is that the quantizer Q(·) is not a conventional
quantizer shown in Fig. 1(a). Instead, the non-monotonic 1-
bit quantizer in Fig. 1(b) is used. This means that values that
are very different could quantize to the same level. However,
for local distances that lie within a small radius of each value,
the quantizer behaves as a regular quantizer with dither and
stepsize ∆. This behavior is highlighted in Fig. 1(c).

Universal embeddings have been shown to satisfy

g (‖x− x′‖2)− τ ≤ dH (f(x), f(x′)) ≤ g (‖x− x‖2) + τ,
(8)

where dH(·, ·) is the Hamming distance of the embedded
signals and g(d) is the map

g(d) =
1

2
−

+∞∑
i=0

e
−
(
π(2i+1)d√

2∆

)2

(π(i+ 1/2))
2 . (9)

Similarly to JL embeddings, universal embeddings hold with
overwhelming probability as long as M = O

(
logP
τ2

)
, where,

again, P is the number of points in S.
Furthermore, the map g(d) can be bounded as follows

g(d) ≥ 1

2
− 1

2
e
−
(
πd√
2∆

)2

, (10)

g(d) ≤ 1

2
− 4

π2
e
−
(
πd√
2∆

)2

, (11)

g(d) ≤
√

2

π

d

∆
, (12)

and is very well approximated using

g(d) ≈

{
d
∆

√
2
π , if d ≤ ∆

2

√
π
2

0.5 otherwise
(13)

III. QUANTIZED EMBEDDINGS FOR KERNEL MACHINES

A. Embedding Ambiguity Analysis

Typical embedding guarantees, such as (5), (6), and (8),
characterize the ambiguity of the embedded distance as a
function of the original signal distance. A general embedding
guarantee has the form

(1− ε)g (dS(x,x′))− τ
≤ dW (f(x), f(x′)) ≤

(1 + ε)g (dS(x,x′)) + τ, (14)

where g : R→ R is an invertible function mapping distances
in S to distances in W and ε and τ quantify, respectively, the
multiplicative and the additive ambiguities of the map. For JL
and QJL, that map is g(d) = d. In universal embeddings the
map is given by (9).

However, in practical inference applications the inverse
is desired. Processing computes distances in the embedding
domain, assuming they are approximately equal with the

corresponding signal distances in the signal space S. The
more ambiguous this correspondence is, the more the inference
algorithm is affected. To expose the ambiguity in original
space S, we rearrange and approximate (14) for small ε, τ
using

d̃S −
τ + εdW (f(x), f(x′))

g′
(
d̃S

)
. dS(x,x′) .

d̃S +
τ + εdW (f(x), f(x′))

g′
(
d̃S

) , (15)

where d̃S = g−1 (dW (f(x), f(x′))) estimates the signal
distance given the embedding distance. Thus, the additive and
multiplicative ambiguities remain approximately additive and
multiplicative and get scaled by the gradient of the map g′(·).

In JL and QJL embeddings, this gradient is constant
throughout the map since the map is linear. In universal
embeddings, however, the gradient is inversely proportional
to ∆ in the range of distances preserved, and approximately
zero beyond that:

g′(d) ≈

{
1
∆

√
2
π , if d ≤ ∆

2

√
π
2

0 otherwise
(16)

Thus, universal embeddings have ambiguity proportional to ∆
for a range of distances also proportional to ∆ and approxi-
mately infinite ambiguity beyond that. Taking their ratio, one
can easily derive the following remark:

Remark In universal embeddings, the embedding ambiguity
over the preserved distances is approximately equal to 2τ times
the range of preserved distances.

For the majority of inference applications, only local dis-
tances need to be preserved by the embedding. For example,
NN methods only require that the radius of distances pre-
served is such that the nearest neighbors can be determined.
For SVM-based inference, this can be formalized using the
machinery of kernel-based SVMs.

B. Quantized Embeddings Imply Radial Basis Function Ker-
nels

Radial basis function (RBF) kernels, also known as shift
invariant kernels, for SVMs have been very successful in a
number of applications, as they regularize the learning to
improve inference [14]. Their defining property is that the
kernel function K(x,x′) is only a function of the distance
of the two points, i.e., K(x,x′) = κ(‖x− x′‖2).

While [10] demonstrates that randomized feature maps can
approximate certain radial basis kernels, the constructed maps
are not quantized, and, therefore, not very useful for trans-
mission. Universal embeddings, however, also approximate
a shift-invariant kernel. This kernel further approximates the
commonly used Gaussian radial basis kernel.



Proposition 3.1: Let φ(x) : RN → {−1, 1}M be a mapping
function defined as φ(x) = Q(Ax + e), with q = φ(x). The
kernel function K(x,x′) given by

K(x,x′) =
1

2M
qTq′ (17)

is shift invariant and approximates the radial basis function

K(x,x′) ≈ 1

2
− g (‖x− x′‖2) , (18)

with g(d), as defined in (9). Furthermore, this RBF approxi-
mates the Gaussian RBF.

Proof By expressing the Hamming distance in {+1,−1}M
as a Euclidian distance in RM , i.e., using dH (φ(x), φ(x′)) =

1
4M ‖q− q′‖22, we obtain

1

4M
‖q− q′‖22 =

1

4M
‖q‖22 +

1

4M
‖q′‖22 −

1

2M
qTq′

=
1

4
+

1

4
− 1

2M
qTq′ (19)

⇒ K(x,x′) =
1

2M
qTq′ =

1

2
− dH (φ(x), φ(x′)) . (20)

Exploiting the bounds in (8), we can approximate the kernel
K(x,x′) using

1

2
− g(d) + τ

≤ K(x,x′) =
1

2
− dH (φ(x), φ(x′)) ≤

1

2
− g(d) + τ, (21)

where d = ‖x−x′‖2 is the distance between the two signals.
Thus, the kernel approximates the RBF kernel K(x,x′) =
1
2 − g(‖x − x′‖) within τ . Furthermore, using (9), (11) and
(10), we can further approximate the kernel K(x,x′) as

1

2
e
−
(
πd√
2∆

)2

− τ ≤ K(x,x′) ≤ 4

π2
e
−
(
πd√
2∆

)2

+ τ. (22)

In other words, the resulting kernel is an approximation of

the Gaussian RBF kernel, KG(x,x′) = ce
−
(
‖x−x′‖√

2σ

)2

, with
σ = ∆

π . Note that in practice the constant scaling c does not
matter in the kernel computation and is typically set to 1.

Note that the approximation is not very accurate near the
origin, where d ≈ 0, but d 6= 0. In that region, the Gaussian
RBF is flatter, while our kernel is steeper. An appropriate
approximation there is the first order polynomial RBF kernel
K(x,x′) = c‖x−x′‖2. However, the ambiguity due to τ will
dominate that effect in practice.

Of course, QJL are approximations of the standard inner
product kernel K(x,x′) = xTx′. The accuracy of the approx-
imation depends on the rate used for the embedding and the
allocation of the rate between projection dimensionality M
and bits per dimension B, as described in Sec. II-C.

Extract'
features'

JL.Embedding'
plus'dither'

Scalar/universal'
quan<za<on'

Assign'binary'
image'label'

Train'SVM'

Feature'compression'

Training'
images'

x 

q 

z = ±1 w, b 

Feature'compression' Test/query'
image'

q’ 

SVM'Classifier:'
wTq’ + b > 0? 

True/False'

Client'

Server'

Fig. 2. Block diagram illustrating the feature compression, classifier training,
and object detection stages of a binary classification task. Every training
image is assigned a binary label z ∈ {−1,+1} indicating whether or not
it corresponds to the target object class.

C. Feature Compression For Classification

Quantized and universal embeddings are quite useful for
visual inference over a network. In this section, we put
everything together and formulate the object classification
task using binary linear SVMs. These SVMs are trained on
image feature vectors, or descriptors, that are compressed
using quantized embeddings.

Fig. 2 shows a block diagram of our classification frame-
work for a single object class C. Given a database of training
images at the server, indexed by i ∈ {1 . . . ,m} and cor-
responding labels z(i) ∈ {−1,+1}, we first extract feature
vectors x(i) ∈ RN from every image. We then generate
quantized or universal embeddings q(i) of the feature vectors,
as described in Sections II-C and II-D.

The quantized embeddings of image features q(i) are then
used to train an SVM classifier to find a separating hyperplane,
identified by the vector w and bias term b, by solving (2). The
separating hyperplane divides the embedding space into points
that generate positive versus negative labels.

When a visual query is executed, the client computes
quantized embeddings q′ from features extracted from the
query image, and transmits the quantized embeddings over a
channel to the server. Classification is performed at the server
according to the sign of wTq′ + b, such that,

if wTq′ + b > 0, then query image ∈ C. (23)

The same framework can be extended to multiclass classi-
fication by computing a new separating hyperplane identified
by (w(j), b(j)) for each class Cj for j ∈ {1, . . . , J}. However,
classification is now performed by choosing the class that
induces the largest positive margin to the query point, i.e.

query image ∈ Cj∗ , where j∗ = arg max
j

w(j)Tq′ + b(j).

(24)

IV. EXPERIMENTAL RESULTS

We test the performance of our compressed feature repre-
sentation on a multiclass classification problem. The goal is
to identify the class membership of query images belonging
to one of 8 different classes.

To set up this problem, we extract Dalal-Triggs Histogram
of Oriented Gradients (HOG) features [3] from 15 training
and 15 test images. The HOG algorithm extracts a 36 element
feature vector (descriptor) for every 8×8 pixel block in an im-
age. The descriptors encode local 1-D histograms of gradient



0 5 10 15 20 25 30 35 40
55

60

65

70

75

80

85

90

95

Bits per descriptor

M
at

ch
in

g 
ac

cu
ra

cy

 

 

1−bit quantized JL
2−bit quantized JL
3−bit quantized JL
4−bit quantized JL
5−bit quantized JL
1−bit, no embedding

0 5 10 15 20 25 30 35 40
55

60

65

70

75

80

85

90

95

Bits per descriptor

M
at

ch
in

g 
ac

cu
ra

cy

 

 

Universal Embedding, 6 = 2.1277
Universal Embedding, 6 = 1.1821
Universal Embedding, 6 = 1.4507
1−bit, no embedding
1−bit, quantized JL

1 1.2 1.4 1.6 1.8 2 2.2 2.4
76

78

80

82

84

86

88

6

M
at

ch
in

g 
ac

cu
ra

cy

 

 

9 bits/descriptor
13 bits/descriptor
17 bits/descriptor
21 bits/descriptor
25 bits/descriptor
29 bits/descriptor
33 bits/descriptor

(a) (b) (c)

Fig. 3. Classification accuracy as a function of the bit-rate achieved using
(a) quantized JL (QJL) embeddings; and (b) universal embeddings. (c)
Classification accuracy as a function of the quantization step size ∆ used
in computing the universal embeddings.

directions in small spatial regions in an image. Every HOG
feature is compressed using either quantized JL embeddings
or universal quantized embeddings. The compressed features
are then stacked to produce a single compressed feature vector
for each image. Next, the compressed features of the training
images are used to train a binary linear SVM classifier. In
the testing stage, compressed HOG features of the test/query
images are computed and classification is performed using the
trained SVM classifier. In our simulations, we used tools from
the VLFeat library [15] to extract HOG features and train the
SVM classifier.

We consider eight image classes. One is the persons from
the INRIA person dataset [3], [16]. The other seven—car,
wheelchair, stop sign, ball, tree, motorcycle, and face—
extracted from the Caltech 101 dataset [17], [18]. All images
are standardized to 128×128 pixels centered around the target
object in each class.

Fig. 3(a) shows the classification accuracy obtained by
quantized JL embeddings of HOG descriptors using the trained
SVM classifier. The black square corresponds to 1-bit scalar
quantization of raw non-embedded HOG descriptors, using a
bit-rate of 36 bits—one bit for each element of the descriptor.

The figure shows that 1-bit quantized JL embeddings allow
us to achieve a 50% bit-rate reduction, compared to non-
embedded quantized descriptors, without reduction in per-
formance (classification accuracy). This is obtained using
an 18-dimensional JL embedding of every HOG descriptor,
followed by 1-bit scalar quantization. Furthermore, increasing
the embedding dimension, and, therefore, the bit-rate, above
18 improves the inference performance beyond that of the 1-
bit quantized non-embedded HOG features. Note that, among
all quantized JL embeddings, 1-bit quantization achieves the
best rate-inference performance.

Fig. 3(b) compares the classification accuracy of universal
embeddings for varying values of the step size parameter ∆
with that of the 1-bit quantized JL embeddings and the 1-bit
quantized non-embedded HOG descriptors. With the choice
of ∆ = 1.4507, the universal embedded descriptors further
improve the rate-inference performance over the quantized
JL embeddings. In particular, they also achieve the same
classification accuracy as any choice of quantization for non-
embedded HOG descriptors, or, even, unquantized ones, at
significantly lower bit-rate—points not shown in the figure, as
they are out of the interesting part of the bit-rate scale.

Figure 3(c) illustrates the effect of the parameter ∆ by
plotting the classification accuracy as a function of ∆ for
different embedding rates. The figure shows that, similar to the
findings in [9], if ∆ is too small or too large, the performance
suffers.

As evident, an embedding-based system design can be
tuned to operate at any point on the rate vs. classification
performance frontier, not possible just by quantizing the raw
HOG features. Furthermore, with the appropriate choice of
∆, universal embeddings improve the classification accuracy
given the fixed bit-rate, compared with quantized JL em-
beddings, or reduce the bit-rate required to deliver a certain
inference performance.

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, pp. 91–110, 2004.

[2] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346 – 359, Jun. 2008.

[3] D. Navneet and B. Triggs, “Histograms of oriented gradients for human
detection,” in International Conference on Computer Vision & Pattern
Recognition, vol. 2, June 2005, pp. 886–893.

[4] K. Min, L. Yang, J. Wright, L. Wu, X.-S. Hua, and Y. Ma, “Compact
projection: Simple and efficient near neighbor search with practical
memory requirements,” in Proc. IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), San Francisco, CA, June 13–18 2010.

[5] C. Yeo, P. Ahammad, and K. Ramchandran, “Rate-efficient visual
correspondences using random projections,” in Proc. IEEE International
Conference on Image Processing (ICIP), San Diego, CA, October 12-15
2008.

[6] M. Li, S. Rane, and P. T. Boufounos, “Quantized embeddings of scale-
invariant image features for mobile augmented reality,” in Proc. IEEE
International Workshop on Multimedia Signal Processing (MMSP),
Banff, Canada, Sept. 17–19 2012.

[7] S. Rane, P. T. Boufounos, and A. Vetro, “Quantized embeddings: An
efficient and universal nearest neighbor method for cloud-based image
retrieval,” in Proc. SPIE Applications of Digital Image Processing
XXXVI, San Diego, CA, August 25-29 2013.

[8] P. T. Boufounos, “Universal rate-efficient scalar quantization,” IEEE
Trans. Info. Theory, vol. 58, no. 3, pp. 1861–1872, March 2012.

[9] P. T. Boufounos and S. Rane, “Efficient coding of signal distances
using universal quantized embeddings,” in Proc. Data Compression
Conference (DCC), Snowbird, UT, March 20-22 2013.

[10] A. Rahimi and B. Recht, “Random features for large-scale kernel
machines,” 2007.

[11] W. Johnson and J. Lindenstrauss, “Extensions of Lipschitz mappings
into a Hilbert space,” Contemporary Mathematics, vol. 26, pp. 189 –
206, 1984.

[12] D. Achlioptas, “Database-friendly Random Projections: Johnson-
lindenstrauss With Binary Coins,” Journal of Computer and System
Sciences, vol. 66, pp. 671–687, 2003.

[13] S. Dasgupta and A. Gupta, “An elementary proof of a theorem of
Johnson and Lindenstrauss,” Random Structures & Algorithms, vol. 22,
no. 1, pp. 60–65, 2003.

[14] A. J. Smola, B. Schölkopf, and K.-R. Müller, “The connection between
regularization operators and support vector kernels,” Neural networks,
vol. 11, no. 4, pp. 637–649, 1998.

[15] A. Vedaldi and B. Fulkerson, “VLFeat: An open and portable library of
computer vision algorithms,” http://www.vlfeat.org/, 2008.

[16] “INRIA Person Dataset,” http://pascal.inrialpes.fr/data/human/.
[17] L. Fei-Fei, R. Fergus, and P. Perona, “Learning Generative Visual Mod-

els from Few Training Examples: An Incremental Bayesian Approach
Tested on 101 Object Categories,” in Proc. IEEE Conf. on Comp. Vision
and Pattern Recognition (CVPR), Workshop on Generative-Model Based
Vision., June 2004, pp. 178–178.

[18] “Caltech 101 dataset,” http://www.vision.caltech.edu/Image Datasets/
Caltech101/.


