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Abstract Low-dimensional embeddings have emerged as a key component in mod-
ern signal processing theory and practice. In particular, embeddings transform sig-
nals in a way that preserves their geometric relationship but makes processing more
convenient. The literature has, for the most part, focused on lowering the dimen-
sionality of the signal space while preserving distances between signals. However,
there has also been work exploring the effects of quantization, as well as on trans-
forming geometric quantities, such as distances and inner products, to metrics easier
to compute on modern computers, such as the Hamming distance.

Embeddings are particularly suited for modern signal processing applications, in
which the fidelity of information represented by the signals is of interest, instead
of the fidelity of the signal itself. Most typically, this information is encoded in
the relationship of the signal to other signals and templates, as encapsulated in the
geometry of the signal space. Thus, embeddings are very good tools to capture the
geometry, while reducing the processing burden.

In this chapter, we provide a concise overview of the area, including founda-
tional results and recent developments. Our goal is to expose the field to a wider
community, to provide, as much as possible, a unifying view of the literature, and
to demonstrate the usefulness and applicability of the results.
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1 Introduction

Signal representation theory and practice has primarily focused on how to best rep-
resent or approximate signals, while incurring the smallest possible distortion. Ad-
vances such as frames, compressive sensing and sparse approximations have all been
applied in improving the representation accuracy or sampling complexity using a fi-
delity metric as the principal figure of merit. On the other hand, as computation
becomes more prevalent, signal representations are increasingly important in infer-
ence and estimation applications. Such applications typically exploit the geometry
of the signal space, usually captured mathematically by norms and inner products. In
these cases, the representation should faithfully preserve the geometry of the signal
space, but not necessarily the signals themselves.

This chapter explores embeddings as a signal representation mechanism that pre-
serves the geometry of the signal space. Embeddings are transformations from one
signal space to another—the embedding space—which exactly or approximately
preserve signal geometry. The use of an embedding is beneficial if the transforma-
tion provides some convenience in its use. For example, the embedding space might
have significantly lower dimensionality than the signal space, might allow for easier
computation of certain quantities, or might enable efficient transmission by quantiz-
ing in the embedding space.

In this chapter, we explore several aspects of embedding design. We start with
the foundational work by Johnson and Lindenstrauss [40], and continue with more
recent developments. We describe embeddings that preserve distances, inner prod-
ucts, and angles between signals, while reducing the dimension and the bit-rate.
We also describe embedding design strategies, both data-agnostic and universal, as
well as learning-based and data-driven. Our discussion also explores the effect of
quantization, which becomes necessary when the embeddings are used to reduce
the bit-rate of the representation.

Our goal is to expose the field to a wide community and show that embeddings
are essential data processing tools. In our exposition, we attempt to provide, as much
as possible, a unifying view of the literature. However, we remark that recent ad-
vances have reinvigorated research in this area, often making such unification elu-
sive.

1.1 Notation

In the remainder of the chapter, we use regular typeface, e.g., x and y, to denote
scalar quantities. Lowercase boldface such as x denotes vectors and uppercase bold-
face such as A denotes matrices. The mth element of vector x is denoted using xm.
Functions are denoted using regular lowercase typefaces, e.g., g(·). Unless explic-
itly noted, all functions are scalar functions of one variable. In abuse of notation, a
vector input to such functions, e.g., g(x) means that the function is applied element-
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Fig. 1 Distance-preserving embeddings approximately preserve a function g(·) of the distance,
allowing distances to be computed in a space that (typically) has fewer dimensions or has other
desirable properties.

wise to all the elements of x. Sets and vector spaces are denoted using calligraphic
fonts, e.g., W , S .

1.2 Outline

The next section describes distance-preserving embeddings. Starting with gen-
eral definitions and foundational results, the section explores embedding design
strategies—both data-agnostic and data-driven—and discusses the nature of distance-
preserving guarantees. Section 3 examines embeddings that preserve angles and in-
ner products, including kernel inner products. Quantization strategies and the effects
of quantization on the embedding guarantees are discussed in Sec. 4. Section 5 pro-
vides a higher-level discussion and concludes the chapter.

2 Preserving Distances

The best-known embeddings preserve the geometry of the space by preserving the
distance between signals. In this section, we examine distance-preserving embed-
dings, and explore some ways to design their distance-preserving properties.

2.1 Randomized Linear Embeddings

An embedding is a transformation of a set of signals in a high-dimensional space to
a (typically) lower-dimensional one such that some aspects of the geometry of the
set are preserved, as depicted in Fig. 1. Since the set geometry is preserved, distance
computations can be performed directly on the low-dimensional—and often low
bit-rate—embeddings, rather than the underlying signals. For the purposes of this
chapter, we define an embedding as follows.
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Definition 1. A function f : S → W is a (g,δ ,ε) embedding of S into W if, for
all x,x′ ∈S , it satisfies

(1−δ )g
(
dS (x,x′)

)
− ε ≤ dW

(
f (x), f (x′)

)
≤ (1+δ )g

(
dS (x,x′)

)
+ ε. (1)

In this definition, g : R→ R is an invertible function mapping distances in S
to distances in W and δ and ε quantify, respectively, the multiplicative and the ad-
ditive ambiguity of the mapping. We will often refer to g(·) as the distance map
and to f (·) as the embedding map. In most known embeddings, such as the ones
discussed in this section, the distance map is the identity g(d) = d or a simple scal-
ing. The similarity metrics dS (·, ·) and dW (·, ·) are typically distances, but could
also be correlations, divergences, or other functions capturing signal geometry and
similarity1.

The best known embeddings are the Johnson-Lindenstrauss (JL) embeddings [40].
These are functions f : S → RM from a finite set of signals S ⊂ RN to an M-
dimensional vector space such that, given two signals x and x′ in S , their images
satisfy:

(1−δ )‖x−x′‖2
2 ≤ ‖ f (x)− f (x′)‖2

2 ≤ (1+δ )‖x−x′‖2
2. (2)

In other words, these embeddings preserve Euclidean, i.e., `2, distances of point
clouds within a small factor, measured by δ , and using the identity as a distance
map.

In the context of Def. 1, a JL embedding is a (gI ,δ ,0) embedding of squared Eu-
clidean distances—dS (x,x′) = ‖x−x′‖2

2 and dW ( f (x), f (x′)) = ‖ f (x)− f (x′)‖2
2—

with an identity distance map gI(d)= d. In this context, the JL theorem can be stated
as:

Theorem 1. Given δ ∈ (0,1) and a set S ⊂ RN of #(S ) = L points and M =
O(δ−2 lnL), there exists a Lipschitz map f : RN→RM that is a (gI ,δ ,0) embedding
of S , with gI(d)= d, dS (x,x′)= ‖x−x′‖2

2 and dW ( f (x), f (x′))= ‖ f (x)− f (x′)‖2
2.

Johnson and Lindenstrauss demonstrated that a distance-preserving embedding,
as described above, exists in a space of dimension M = O(δ−2 logL), where L is
the number of signals in S (its cardinality) and δ the desired tolerance in the em-
bedding. Remarkably, M is independent of N, the dimensionality of the signal set
S . Subsequent work showed that it is straightforward to compute such embed-
dings using a linear mapping. In particular, the function f (x) = Ax, where A is an
M×N matrix whose entries are drawn randomly from specific distributions, satis-
fies (2) for all x,x′ ∈S with probability 1−c1elogL−c2δ 2M , for some universal con-
stants c1,c2, where the probability is with respect to the measure of A. Commonly
used distributions for the entries of A are i.i.d. Gaussian, i.i.d. Rademacher, or i.i.d.

1 Technically, we could incorporate g(·) into dS (·, ·) and remove it from this definition. However,
we choose to make it explicit here and consider it a distortion to be explicitly analyzed. In an abuse
of nomenclature, we generally refer to d(·, ·) as distance, even if in some cases it is not strictly a
distance metric but might be an inner product, or another geometric quantity of interest.
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uniform [1, 25]. More recent work has shown that the embedding dimensionality
M = O(δ−2 logL) is also necessary, making these constructions tight [38].

Most proofs involve constructing a randomized map such that (1) holds with very
high probability on a pair of points x,x′ ∈ S . Using a concentration of measure
argument, such as Hoeffding’s inequality or a Chernoff bound, it can typically be
shown that the guarantee fails with probability that decays exponentially with the
number of measurements, i.e., with the dimensionality of the embedding space M =
dim(W ). In other words, the embedding fails on a pair of points with probability
bounded by Ω(e−Mw(δ ,ε)), where w(δ ,ε) is an increasing function of ε and δ that
quantifies the concentration of measure exhibited by the randomized construction.

Once the embedding guarantee is established for a pair of signals, a union bound
or chaining argument can be used to extend it to a finite set of signals. If the set S
is finite, containing L points, then the probability that the embedding fails is upper
bounded by Ω(L2e−Mw(δ ,ε)) = Ω(e2logL−Mw(δ ,ε)), which decreases exponentially
with M, as long as M = O(logL).

More recently, in the context of compressive sensing, such linear embeddings
have been shown to embed infinite sets of signals. For example, the restricted isom-
etry property (RIP) is an embedding of K-sparse signals and has been shown to
be achievable with M = O(K log N

K ) [10, 23, 50]. A near equivalence of RIP with
the JL lemma has also been established: an RIP matrix with its columns randomly
multiplied with ±1 will satisfy the JL lemma [41]. Similar properties have been
shown for other signal set models, such as more general unions of subspaces and
manifolds [9, 11, 12, 21, 28, 29, 50].

Typically, these generalizations are established by first proving that the embed-
ding holds in a sufficiently dense point cloud on the signal set and exploiting linear-
ity and smoothness to extend it to all the points of the set. The resulting guarantee
uses the covering number of the set, i.e., its Kolmogorov complexity—instead of the
number of points L—to measure the complexity of the set and determine the dimen-
sionality required of the projection. A fairly general exposition of this approach, as
well as generalizations for non-smooth embedding maps can be found in [20].

An alternative characterization of the complexity of S is its Gaussian width.

Definition 2. Given a set S ⊆ RN , the quantity

W (S ) = E
{

sup
x∈S

gT x
}
, (3)

where the expectation is taken over g∼N (0,I) is called the Gaussian width of S .

The Gaussian width of a set can sometimes be easier to characterize than its Kol-
mogorov complexity, although the latter can be bounded by the former [28].

Beyond the discussion above, in the remainder of this chapter, we defer on the
rigorous development required to extend embedding guarantees to hold for infinite
signal sets. Nevertheless, in many cases we will mention if such generalizations are
possible or exist in the literature.
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2.2 Embedding Map Design

One of the key elements in the embedding definition (1) is the embedding map g(·).
The JL guarantee in (2) implies an embedding map g(d) = d, that does not distort
the distance measure. However, it is often desirable to introduce such distortions
and understand their effect. For example, if the interest is in preserving only local
distances, the distance map can be used to describe and characterize the distance
preserving properties of the embedding [17, 19, 20].

A general approach to embedding design would use g(·) to derive an embedding
function f (·), possibly randomized, that achieves (1) given sufficient dimensionality
of the embedding space W . Unfortunately, such a design is still an open problem.
Furthermore, an arbitrary g(·) is not always possible. For example, any realizable
g(·) satisfies a generalized subadditivity property [20].

Instead, [20] demonstrates a general probabilistic approach to designing the em-
bedding function f (·) and deriving the embedding map. The mapping function takes
the form y = f (x) = h(Ax+w), where the elements of A are randomly chosen
from an i.i.d. distribution and the elements of the dither w are chosen from an i.i.d.
distribution uniform in [0,1). The embedding is designed through h(t), a bounded
periodic scalar function with period 1, applied element-wise to its argument. The
Fourier series coefficients of h(·) are denoted using Hk and h̄ = supt h(t)− inft h(t).

Theorem 2 ( [20], Thm. 4.1). Consider a set S of Q points in RN , measured using
y = h(Ax+w), with A, w, and h(t) as above. With probability greater than 1−
e2logQ−2M ε2

h̄4 the following holds

g(d)− ε ≤ 1
M

∥∥y−y′
∥∥2

2 ≤ g(d)+ ε (4)

for all pairs x,x′ ∈S and their corresponding measurements y,y′, where

g(d) = 2∑
k
|Hk|2(1−φl(2πk|d)). (5)

defines the distance map of the embedding.

In the theorem above, φl(l|d) is a characteristic function depending on the density
of A. For example, if the elements of A are drawn from an i.i.d. Normal distribu-
tion, then the characteristic function is φl(ξ |d) = φN (0,σ2d2)(ξ ) = e−

1
2 (σdξ )2

and
the distance map becomes

g(d) = 2∑
k
|Hk|2

(
1− e−2(πσdk)2

)
, (6)

with d measuring the `2 distance.
If, instead, elements of A are drawn from an i.i.d. Cauchy distribution with

zero location parameter and scale parameter γ , then the characteristic function is
φl(ξ |d) = e−γd|ξ | and the corresponding distance map is



Embedding-based Representation of Signal Geometry 7

g(d) = 2∑
k
|Hk|2(1− e−2πγdk), (7)

with d in this case measuring the `1 distance.
The guarantee in Thm. 2 is about embedding the `1 or `2 distance into `2

2. By
taking the square root, the guarantee can be provided for embedding into `2 instead.

Corollary 1 ( [20], Cor. 4.1). Consider the signal set S , defined and measured as

in Thm. 2. With probability greater than 1− e2logQ−2M( ε

h̄ )
4

the following holds

g̃(d)− ε ≤ 1√
M

∥∥y−y′
∥∥

2 ≤ g̃(d)+ ε (8)

for all pairs x,x′ ∈S and their corresponding measurements y,y′, where g̃(d) =√
g(d).

2.3 Distance-preserving properties of the map

Typically, when designing a distance map, it is desirable to understand how accurate
the embedding is in representing distances. In particular, embedding guarantees, as
stated above and in the literature, bound how much the distance in the embedding
space might deviate from the true distance between the signals.

However, in practice, embeddings are used as a proxy for the true distance of the
signals. Given two signals, x and x′, and their embedding distance, dW ( f (x), f (x′)),
a natural estimate of the true signal distance is [19, 20]

d̃S = g−1 (dW

(
f (x), f (x′)

))
, (9)

assuming g(·) is differentiable. Thus, the approximation guarantee is often more
useful when stated with respect to the estimate, d̃S .

∣∣∣d̃S −dS (x,x′)
∣∣∣. ε +δdW ( f (x), f (x′))

g′
(

d̃S

) . (10)

An important component of this guarantee is its dependence on the gradient of
the embedding map g′(·) around the distance of the signals. In regions where the
embedding map is flatter, the ambiguity is higher. In hindsight, this is expected: es-
timates of a variable observed through a non-linear map and observation ambiguity
are less accurate at regions of the map that are flatter.

Figure 2 demonstrates this effect using a (g,0,ε) embedding as an example. The
solid line in the left figure depicts the distance map g(·). The two dashed lines depict
the upper and lower bounds of the guarantee, separated by ε above and below the
distance map. In other words, the vertical ambiguity is constant across the range of
dS . The figure also shows two example points on which the embedding distance is
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Fig. 2 Effect of the gradient of the distance map on the distance ambiguity of the embedding. (left)
Even though the vertical ambiguity is constant across the distance map, the corresponding horizon-
tal ambiguity varies significantly, depending on the slope of the map. (right) Example embedding
exhibiting similar behavior as described by the map on the left.

computed, dW and d′W . The corresponding estimates of the true signal distance are
g−1(dW ) and g−1(d′W ), respectively. However, the ambiguity of these estimates is
significantly higher for dW than for d′W , because of the difference in slope of g(·) at
the corresponding points. Simulations using an actual embedding design exhibiting
the same behavior are shown on the right hand side.

Embedding maps designed using the approach in Sec. 2.2 eventually saturate and
become flat beyond a certain signal distance. Thus, the ambiguity becomes infinite;
the embedding does not preserve distances beyond a range. Given an embedding
map h(·), this range can be controlled by the scaling parameters of the distribution
of A, such as σ and γ in (6) and (7), respectively. The same parameters also scale
the gradient of the embedding, thus controlling the ambiguity, as described in (10).
In other words, varying the scale parameters is equivalent to navigating a trade-
off between smaller ambiguity while representing a smaller range of distances, and
greater ambiguity while representing a larger range of distances. In fact, similar
trade-offs are possible with any embedding function, simply by scaling the argument
and replacing f (x) with f (ax) for any a > 0.

The distance preserving ambiguity described above characterizes distance preser-
vation through g(·) along a full range of distances. However, it is often sufficient to
only guarantee the locality of the embedding, i.e., that small distances remain small
and larger distances do not become too small. Recent work has attempted to define
locality in the context of binary embeddings [46, Def. 2.3], as well as, implicitly,
in the context of learning an embedding for classification [31, Eq. (6)]. In the same
spirit, guarantees on using JL embeddings for classification have been recently es-
tablished, assuming specific signal models. In particular, in [7] it is shown that sep-
arated convex ellipsoids remain separated when randomly projected to a space with
sufficiently high dimensionality. However, an appropriate and useful characteriza-
tion of locality is still a pending question.

One important property of the embeddings described so far is their universality.
Their randomized construction does not take the data into account. The guarantees
hold with very high probability on any set of points S to be embedded, as long as
the set complexity is known. Thus, there is no adversarial selection of the data for
which the embedding will fail, assuming the data set is generated independently of
the embedding. The next section explores embeddings designed while taking sample
data into account, their advantages, as well as their disadvantages.
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2.4 Learning the Embedding Map

A key advantage of the embeddings described above is their universality and the
simplicity in computing them. However, it is often advantageous to tune the embed-
ding to an application using available training data. The main assumption is that the
training data is representative of the data to be observed by the application; tuning
the embedding to the data should provide an embedding that performs well on all
future data on which the embedding will be used.

Inspired by the JL lemma, recent work [31,54] demonstrates that given a set of L
points S = {xi ∈RN , i= 1, . . . ,L} as training data, it is possible to formulate a con-
vex optimization problem and determine a linear embedding map, f (x) = Ax, that
preserves the squared Euclidean distance. The resulting map provides a (gI ,δ ,0)
embedding. The problem can be formulated to either minimize the dimensionality
of the embedding space under a fixed multiplicative distortion δ or minimize the
distortion given a fixed embedding dimensionality.

In formulating the problem, the objects of interest are not the signals xi but their
differences xi− x j. Thanks to the linearity of the map, to guarantee a 1± δ mul-
tiplicative ambiguity it is sufficient to guarantee a δ distortion of the normalized
difference xi−x j

‖xi−x j‖2 . Thus, the formulation starts with the secant set

X =

{
vi j =

xi−x j

‖xi−x j‖2
, xi,x j ∈S , i 6= j

}
(11)

The map f (x) = Ax satisfies the guarantee for all vi j ∈X if
∣∣‖Avi j‖2

2−‖vi j‖2
2
∣∣≤ δ , (12)

where, by construction, ‖vi j‖2
2 = 1 for all i, j.

The squared norm can be expressed as a quadratic form ‖Avi j‖2
2 = vT

i jAT Avi j

which is linear in P = AT A. Furthermore, if A ∈ RM×N , then P, which is positive
semidefinite, has rank(P) = M. Thus, the P corresponding to the embedding that
satisfies (12) for all pairs i 6= j with the minimum number of measurements can be
found using the following optimization [31]:

P̂ =arg min
PT=P�0

rank(P) (13)

subject to |vT
i jPvi j−1| ≤ δ for all i 6= j.

This is a non-convex and combinatorially complex program. To solve it, [31] pro-
poses the relaxation of the rank using the nuclear norm, which results in the follow-
ing polynomial-time semidefinite program:

P̂ =arg min
PT=P�0

‖P‖∗ (14)

subject to |vT
i jPvi j−1| ≤ δ for all i 6= j.



10 Petros T. Boufounos, Shantanu Rane, Hassan Mansour

Alternatively, [54] modifies the formulation to determine the optimal δ using a
fixed number of measurements M, also adding an energy constraint on the coeffi-
cients of the matrix A. The resulting problem constrains both the rank and the trace
norm of P.

P̂ =arg min
PT=P�0

max
i6= j
|vT

i jPvi j−1| (15)

subject to rank(P)≤M and ‖P‖∗ ≤ b, (16)

where b is the energy constraint. Using a game-theoretic formulation, [54] also de-
rives an algorithm to solve (16) with performance guarantees. It is also shown that
the performance of the embedding can be guaranteed on new data, similar to the
training set, using a continuity argument similar to the one in [10].

As mentioned in Sec. 2.3, a notion of semantic locality is also introduced in [31],
in the context of classification. In particular, for elements i and j from the training
data that belong in the same class, the embedding should guarantee that their dis-
tances do not increase significantly but does not need to limit how much they may
shrink. On the other hand if elements i and j belong to different classes, the embed-
ding should guarantee that their distances do not shrink significantly but may allow
them to grow unconstrained. Under those conditions, the embedding guarantees that
each cluster stays together, even though two different clusters may separate from
each other. Thus, classification is still possible in the embedded data. The resulting
optimization is less constrained than (15).

P̂ = arg min
PT=P�0

‖P‖∗ (17)

subject to vT
i jPvi j ≥ 1−δ for all i 6= j in different classes.

vT
i jPvi j ≤ 1+δ for all i 6= j in the same class.

In all the formulations above, A can be determined from P̂ using a simple
factorization. For example, the economy-sized singular value decomposition is
P̂ = UΣΣΣUT , where U ∈ RN×M has orthonormal columns and ΣΣΣ ∈ RM×M is diag-
onal. The embedding can be computed using Â = ΣΣΣ

1/2UT .

3 Preserving Inner Products, Angles, and Correlations

The embeddings discussed in the previous section are designed to preserve distances
between signals in the embedding space. However, in a number of problems, inner
products and correlations should be preserved instead. In this section we consider
how distance embeddings can be used to preserve regular inner products and kernel
inner products, as well as how binary and phase embeddings can be used to preserve
normalized correlations, i.e., angles, without preserving distances.
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3.1 Inner Product Embeddings

When the signal and the embedding spaces are inner product spaces, then the inner
product can be determined using the signal distances that are preserved. The inner
product of the measurements 〈y,y′〉 can be derived from the `2

2 difference of the
measurements, ‖y−y′‖2

2. Specifically,

‖y−y′‖2
2 = ‖y‖2

2 +‖y′‖2
2−2〈y,y′〉=⇒ 〈y,y′〉= ‖y‖

2
2 +‖y′‖2

2−‖y−y′‖2
2

2
. (18)

When all these norms are preserved by the embedding, it is straightforward to show
that JL-type random projections satisfy [2]

∣∣〈y,y′〉−〈x,x′〉
∣∣≤ δ (‖x‖2

2 +‖x′‖2
2) (19)

With a little more care, exploiting the linearity of the embedding, a tighter bound
can be derived [27]

∣∣〈y,y′〉−〈y,y′〉
∣∣≤ δ‖x‖2‖x′‖2 (20)

In addition to standard inner products, appropriately designed embeddings can
also be used to approximate kernel inner products. Kernel inner product embed-
dings were first introduced in [51] and significantly generalized in [17,20]. Common
kernels include the Gaussian K(x,x′) = e‖x−x′‖22/σ2

and the Laplacian K(x,x′) =
eγ‖x−x′‖1 . Since computing those kernels relies on computing distances, the devel-
opment in Sec. 1 could be used to directly estimate the distance and compute the ker-
nel. However, the resulting ambiguity would manifest itself in the exponent, making
it difficult to characterize and control.

Instead, guarantees based on computing the inner product in the embedding do-
main can be derived, exploiting the design approach in Sec. 2.2. Similarly to stan-
dard inner products, establishing the guarantees relies on (18). However, the diffi-
culty lies in bounding ‖y‖2

2 which is necessary, in addition to the distance between
y and y′. When using the embedding design in Thm. 2, it is straightforward to show
that, in the embedding space,

∑
k
|Hk|2− ε ≤ 1

M
‖y‖2

2 ≤∑
k
|Hk|2 + ε, (21)

with probability greater than 1− 2elogQ−2M ε2
h̄ . Thus, if dW (y,y′) = ‖y− y′‖2

2 in
Def. 1, and substituting (4) and (21) in (18), we can show that the embedding can
be designed to approximate a kernel.

Theorem 3 (Thm. 4.4 in [20]). Consider a set S of Q points in RN , measured
using y = h(Ax+w), with A, w, and h(t) as in Thm. 2. With probability greater

than 1− e2logQ− 8
9 M ε2

h̄4 the following holds



12 Petros T. Boufounos, Shantanu Rane, Hassan Mansour

K(d)− ε ≤ 1
M
〈y,y′〉 ≤ K(d)+ ε (22)

for all pairs x,x′ ∈S and their corresponding measurements y,y′, where

K(d) = ∑
k
|Hk|2φl(k|d). (23)

defines the kernel of the embedding.

Thus, to embed a Gaussian kernel and linear combinations of it, it suffices to
draw the elements of A from an i.i.d. Gaussian distribution. Alternatively, to embed
a Laplacian kernel and linear combinations of it, the elements of A should be drawn
from a Cauchy distribution. The resulting kernels will be described by plugging the
corresponding φ(·|d) in (23), in a similar manner as in (6) and (7):

K(d) = ∑
k
|Hk|2e−2(πσdk)2

(24)

K(d) = ∑
k
|Hk|2e−2πγdk (25)

where A is generated using an i.i.d. zero-mean Gaussian distribution with variance
σ2 or an i.i.d. Cauchy distribution with scale parameter γ and d is the `2 or the `1
distance between signals, respectively.

3.2 Angle Embeddings

Another geometric quantity of interest in a number of applications is the angle be-
tween signals.

d∠(x,x′) =
1
π

arccos
〈x,x′〉
‖x‖2‖x′‖2

(26)

The cosine of the angle is the correlation coefficient of the signals, i.e., their inner
product normalized by their respective norms.

Since JL-type embeddings preserve distances and inner products, it is expected
that they should preserve angles as well. A tighter bound than a naive application
of the definition and the bounds of the previous section was shown in [30] in the
context of sparse signals and the RIP. Specifically,

Theorem 4 (Adapted from Thm. 1 and Remark 1 in [30]). Consider an embed-
ding satisfying the RIP for K-sparse vectors with RIP constant δ ≤ 1/3. For any
K-sparse x and x′ with the same support, such that d∠(x,x′) ≤ 1/2 then the angle
between the embedded vectors y, and y′ satisfies



Embedding-based Representation of Signal Geometry 13

−
√

3δ ≤ d∠(x,x′)−d∠(y,y′)≤ 3δ (27)

=⇒
∣∣d∠(x,x′)−d∠(y,y′)

∣∣≤
√

3δ . (28)

This result can be used to derive a generalized notion of the RIP, linking the inner
product of the embeddings with the geometry of the signals in the signal space [30,
Cor. 1].

More recently, an embedding was derived in the context of 1-bit CS, explicitly
preserving only angles of signals, not their inner products or magnitudes [37]. In
particular, the embedding map

y = f (x) = sign(Ax), (29)

where A has i.i.d. Normally distributed, entries maps the signals to an M-dimensional
binary space, denoted BM , in which the normalized Hamming distance, defined as
dH(y,y′) = (∑m ym⊕ y′m)/M, is the natural metric.

In [37] it is shown that (29) preserves the angle between signals in the normalized
Hamming distance between the measurements, making it a Binary ε-stable embed-
ding

Definition 3. Let ε ∈ [0,1) a mapping f : S →BM is a Binary ε-stable embedding
(BεSE) of S if for all x,x′ ∈S ,

d∠(x,x′)− ε ≤ dH(y,y′)≤ d∠(x,x′)+ ε. (30)

In other words, a BεSE is a (gI ,0,ε) embedding according to Def. 1, with dS =
d∠ and dW = dH . While the result has been developed for K-sparse vectors, it
is straightforward to show that it holds for finite sets of L points using M =
O(ε−2 logL).

Theorem 5 (Adapted from Thm. 3 in [37]). Let A ∈ RM×N be a matrix generated
from an i.i.d. Normal distribution and S be a set of L points. The map (29) is a
BεSE of S with probability greater than 1−2e2(logP−ε2M).

Subsequent work [3,46–49] demonstrated variations of this result for infinite sig-
nal sets, as a function of their mean width, with varying dependence on ε . Further-
more, with some constraints on the signals, it can also be shown for more general
matrix ensembles, with elements drawn from subgaussian distributions.

The generalization of the sign function to complex numbers is the phase. As
expected in hindsight, similar to sign measurements, phase measurements of the
form

y = ∠(Ax) (31)

can also provide stable angle embeddings [14–16]. In particular, if two signals x,x′
in a finite set W of size L are measured with a complex random Gaussian matrix,
the expected value of the mth element of the measured phase difference is equal to
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E
{∣∣∣∠

(
ei(ym−y′m)

)∣∣∣
}
= πd∠(x,x′), (32)

Note that this way of calculating the phase difference naturally takes phase wrapping
into account.

Similarly to the concentration of measure proofs so far, Hoeffding’s inequality
bounds the probability that the average of M random variables |∠(ei(ym−y′m))| devi-
ates from (32). A natural distance metric in the embedding space is

dphase(y,y′) =
1
M ∑

m

∣∣∣∣
1
π
∠
(

ei(ym−y′m)
)∣∣∣∣ (33)

Using the union bound on L2 point pairs, a stable embedding guarantee follows

Theorem 6 ( [16]). Consider a finite set S of L points measured using (31), with
A ∈ CM×N consisting of i.i.d elements drawn from the standard complex normal
distribution. With probability greater than 1−2e2logL−2ε2M the following holds for
all x,x′ ∈S and corresponding measurements y,y′ ∈ RM .

∣∣dphase(y,y′)−d∠(x,x′)
∣∣≤ ε (34)

A complex-valued measurement matrix A is necessary here. If A only contains
real elements, the information in y is essentially the sign of the measurement—0
and π for positive and negative measurements, respectively. In that case, the em-
bedding becomes a BεSE. Furthermore, even though the embedding has an additive
ambiguity—i.e., is a (gI ,0,ε) embedding—it is conjectured that a multiplicative
ambiguity guarantee should be possible to derive—i.e., that it is, in fact, a (gI ,δ ,0)
embedding [16].

Figure 3 compares the performance of this embedding with the BεSE, and
demonstrates that, as expected, it exhibits lower ambiguity for the same number of
measurements M. Furthermore, it shows that the becomes tighter as signals become
similar, supporting the conjecture that a multiplicative-only ambiguity exists.
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Fig. 3 Comparison of BεSE (red) with continouous angle embedding (blue) for the same number
of measurements. The continuous embedding becomes tighter as signals become more similar. As
expected, the binary embedding has higher ambiguity for the same number of measurements.
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Fig. 4 Illustration of the bits vs. measurements trade-off for quantized JL embeddings. (a) A sketch
of the tradeoff between bits per coefficient and embedding dimension given a fixed bit-rate for
quantized JL embeddings. The error due to the JL ambiguity δ also depends on the norm of the
signals being compared, thus affecting the true optimum in practice. Constants were arbitrarily
selected for illustration puproses; the true optimum also depends on the true value of the constants.
(b) Three different simulation examples using the same M = 256, quantized at 2, 4, and 32 bits
per dimension, consuming R = 512, 1024, and 8192 bits, respectively. As expected, the 32 bit
embedding performs best, but at a significant rate penalty. (c) Three simulation examples using rate
R = 256, quantized at 2, 4, and 32 bits per dimension, requiring M = 128, 64, and 8 dimensions,
respectively. As evident, quantizing at 32 bits per coefficient is now suboptimal; the JL-type error
due to δ dominates. In this example, 4 bits per coefficient quantization seems to provide the best
tradeoff overall.

4 Quantized Embeddings

Quite frequently, the embedding is performed not simply as a dimensionaliy reduc-
tion, but as a compression method. In those cases, the quantity of interest is not the
embedding dimensionality, but the number of bits it uses. Therefore, it is necessary
to understand how quantization affects the embedding performance, and what the
quantizer design trade-offs are.

4.1 Quantization of Continuous Embeddings

Although quantization of some embeddings can be analyzed using the periodic em-
bedding framework we describe above, it is often more convenient, especially in
the case of high-rate quantization, to consider it separately, as an additional step af-
ter the projection. The following development closely follows [20] and references
within.

In particular, consider a (g,δ ,ε) embedding which is subsequently quantized
using an M-dimensional vector quantizer Q(·). We assume the quantization er-
ror is bounded, i.e., d(Q(x),x) ≤ EQ. The triangle inequality, |dW ( f (x), f (w))−
dW (Q( f (x)),Q( f (w)))| ≤ 2EQ, implies that the quantized embedding guarantee
becomes a (g,δ ,ε +2EQ) embedding, with guarantee

(1−δ )g(dS (x,y))− ε−2EQ

≤ dW (Q( f (x)),Q( f (y)))≤
(1+δ )g(dS (x,y))+ ε +2EQ. (35)
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Theorem 7 (Thm. 3.3 in [20]). Consider a (g,δ ,ε) embedding f (·) and a quan-
tizer Q(·) with worst case quantization error EQ, then the quantized embedding,
Q( f (·)), is a (g,δ ,ε +2EQ) embedding.

In the specific case of a uniform scalar quantizer with quantization interval ∆ ,
the M-dimensional quantization `2 error is bounded by EQ ≤

√
M∆/2, assuming

the quantizer is designed such that it does not saturate or such that the saturation
error is negligible. The interval of the quantizer is a function of the number of bits
B used per coefficient ∆ = 2−B+1S, where S is the saturation level of the quantizer.
Given a fixed rate to be used by the embedding, R = MB, the guarantee becomes

(1−δ )g(dS (x,y))− ε−2−
R
M +1
√

MS

≤ ‖Q( f (x))−Q( f (y))‖2 ≤
(1+δ )g(dS (x,y))+ ε +2−

R
M +1
√

MS. (36)

Note that the
√

M factor can often be removed, depending on the normalization of
the embedding.

Of course, `2 is not always the appropriate fidelity metric. If the dS (·, ·) corre-
sponds to the `1 distance, the quantization error is bounded by EQ ≤M∆/2. Again,
with care in the normalization, the M factor can be removed. If, instead, the `∞ norm
is desired, the quantization error is bounded by EQ ≤ ∆/2.

One of the issues to consider in designing quantized embeddings using a uni-
form scalar quantizer is the trade-off between the number of bits per dimension and
the total number of dimensions used. Since R = MB, increasing the number of bits
per dimension B under a fixed bit budget R, requires decreasing the number of di-
mensions M. While the former reduces the error due to quantization, the latter will
typically increase the uncertainty in the embedding by increasing δ and ε .

In the case of randomized embeddings, this trade-off can be quantified through
the function w(ε,δ ). Given a fixed probability lower bound to guarantee the em-
bedding, then M = Ω(1/w(ε,δ )). Since w(·, ·) is an increasing function of ε and δ ,
which quantify the ambiguity of the embedding, reducing M increases this ambigu-
ity. On the other hand, the quantization ambiguity, given by 2−

R
M +2S

√
M decreases

with M.
This trade-off is explored, for example, in the context of quantized JL embed-

dings in [43,53]. In particular, randomly generated JL embeddings exhibit ambiguity
δ ∼ 1/

√
M. On the other hand, the quantization error scales as EQ ∼ 2−B ∼ 2−1/M .

A illustrative example is shown in Fig. 4(a): as more bits are used per measure-
ment the ambiguity due to quantization decreases; since fewer measurements are
used, the ambiguity due to the embedding’s δ increases. Figures 4(b) and (c) further
demonstrate this using a simulation experiment. In practice, the optimum depends
on assumptions on the signal distance and assumptions about the constants of pro-
portionality. The same issue exists for non-uniform quantizers and for vector quan-
tizers, manifested with different constants but with the same order of magnitude
effects (e.g., see [36]), as well as other embeddings, such as phase embeddings [14].
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Unfortunately, other than experimentation with sample data, there is no known prin-
cipled way to determine the optimal point in the trade-off.

In addition to the generic guarantees above, it is often possible to provide more
explicit guarantees under certain conditions. For example, the 1-bit embedding guar-
antees in Sec. 3.2 were explicitly established from the embedding map. More re-
cently, [34] draws similarities with the Buffon’s needle problem to provide a tighter
bound on the `1 embedding distance of quantized dithered JL-type embeddings

Theorem 8 (Adapted from Prop. 2 in [34]). Let S ⊂ RN be a set of L points.
Consider the map

y = f (x) = Qε(Ax+w), (37)

where A ∈ RM×N has elements drawn from an i.i.d., standard Normal distribution,
the dither w ∈ RM has elements drawn from an i.i.d. distibution, uniform in [0,ε],
and Qε(·) is an infinite uniform quantizer with interval ε .

Given 0 < δ < 1, ε > 0, and M > Cδ−2L, then, with probability greater than
1− ec′′ε2M , the map (37) satisfies

(1−δ )‖x−x′‖2− cεδ ≤ c′

M
‖y−y′‖1 ≤ (1+δ )‖x−x′‖2 + cεδ (38)

for all pairs of points x,x′ ∈S .

A key insight in this result is the switch to the `1 norm in the embedding space,
instead of the `2 norm used by the JL lemma and earlier results.

4.2 Universal Quantization and Embeddings

In constrast to conventional quantization analysis, universal scalar quantization,
first introduced in [13], fundamentally revisits scalar quantization and redesigns the
quantizer to have non-contiguous quantization regions. Unfortunately the discontin-
uous quantization regions render some of the tools introduced in Sec. 4 impractical.
Fortunately, analysis based on the design described in Sec. 2.2 can be used instead.

A universal embedding also relies on a JL-style projection, followed by scaling,
dithering and scalar quantization:

y = f (x) = Q(∆−1(Ax+w)), (39)

where A is a M×N random matrix with N (0,σ2)-distributed, i.i.d. elements, ∆−1 a
scaling factor, w a length-M dither vector with i.i.d. elements, uniformly distributed
in [0,2B∆ ], and Q(·) a B-bit scalar quantizer operating element-wise on its input.

The key component is a modified B-bit scalar quantizer. Fitting the analysis of
Thm. 2, the quantizer is designed to be a periodic function with non-contiguous
quantization intervals, as shown in Fig. 5(a) for B = 1 and 2. The quantizer can be
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thought of as a regular uniform quantizer, computing a multi-bit representation of a
signal and preserving only the least significant bits (LSB) of the representation. For
example, for a 1-bit quantizer, scalar values in [2l,2l + 1) quantize to 1 and scalar
values in [2l+1,2(l+1)), for any integer l, quantize to 0. If Q(·) is a 1-bit quantizer,
this method encodes using as many bits as the rows of A, i.e., M bits.

This form of quantization, first proposed in [13] in the context of frame expan-
sions and first used in an embedding in [18] is extensively analyzed in [20].

Theorem 9 (Adapted from Thm. 3.2 in [18]). Consider a set S ⊂ RN with L
points embedded using (39), as described above. For all x,x′ ∈S , the embedding
satisfies

g(‖x−y‖2)− ε ≤ dH
(
y,y′

)
≤ g(‖x−y‖2)+ ε, (40)

with probability 1− 2e2logL−2ε2M with respect to the measure of A and w. In (40),
dH(·, ·) is the Hamming distance of the embedded signals, the function f (·) is as
specified in (39), and g(d) is the map

g(d) =
1
2
−

+∞

∑
i=0

e−
(

π(2i+1)σd√
2∆

)2

(π(i+1/2))2 , (41)

Furthermore, the distance map g(d) can be bounded using,

g(d)≥ 1
2
− 1

2
e−
(

πσd√
2∆

)2

, (42)

g(d)≤ 1
2
− 4

π2 e−
(

πσd√
2∆

)2

, (43)

g(d)≤min

(√
2
π

σd
∆

,
1
2

)
, (44)

as shown in Fig. 5(b).
The upper bound (44) also provides a very good approximation of the embed-

ding, as also evident in the figure. The map is approximately linear for small d and
becomes constant, equal to 1/2, exponentially fast as d exceeds a threshold D0. The
slope of the linear section is determined by the parameter ratio σ/∆ , thus specifying
the distance threshold D0 ≈ ∆

√
π/2
√

2σ . In other words, the embedding ensures
that the Hamming distance of the embedded signals is approximately proportional to
the `2 distance between the original signals, as long as that `2 distance was smaller
than D0. Distances greater than D0 are shrunk to Hamming distance≈ 1/2. In other
words the embedding can only reveal that the distance is greater than approximately
D0 but not how much greater.

This embedding enables a trade-off between the threshold D0 and the slope of
the linear part, which determines its ambiguity through (10). Assuming the linear
approximation in (44), it is straightforward to show that the ratio of the range of dis-
tances preserved, as measured through D0, to the ambiguity in preserving distances
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Fig. 5 (a) This non-monotonic quantization function Q(·) allows for universal rate-efficient scalar
quantization. This function is equivalent to using a classical multibit scalar quantizer, and pre-
serving only the least significant bits while discarding all other bits. 1-bit shown on top, multi-bit
shown on bottom (b) The embedding map g(d) and its bounds produced by the 1-bit quantization
function in (a). (c) Experimental verification of the embedding for small and large ∆ at high (left)
and low (right) bit-rates.

in the linear part, as measured through (44) remains constant as the embedding pa-
rameters ∆ and σ change keeping a fixed embedding dimension M, and, therefore, a
fixed rate R = M. In contrast to the tradeoff depicted in Fig. 4, both D0 and the slope
of the linear part are straightforward to compute and do not depend on difficult-to-
characterize constants.

Figure 5(c) illustrates how the embedding behaves in simulations for smaller
(red) and larger (blue) ∆ and for higher (left) and lower (right) bit-rates. The figure
plots the embedding (Hamming) distance as a function of the signal distance for
randomly generated pairs of signals. The thickness of the curve is quantified by ε ,
whereas the slope of the upward sloping part is quantified by ∆ .

In addition to 1-bit universal embedding for finite signal sets, [20] generalizes
the guarantees to infinite sets and to multi-bit embeddings. Of course, multibit em-
beddings re-introduce a similar trade-off as in Fig. 4, which has not been explored
in the literature.

In addition to the embedding properties, information-theoretic arguments can be
used to guarantee that universal embeddings can preserve the query privacy [18,39].
This can be a very useful property in implementing secure protocols for signal-based
querying and retrieval in privacy-sensitive applications [52].
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5 Discussion

As evident from the discussion above, embeddings can play a significant role in
modern data processing systems. In this chapter, we have only presented a selec-
tive overview of the area, some important results, and pointers for further reading.
However, increasing demand for efficient data processing has reinvigorated the field,
leading to a flurry of new results in a number of interesting directions.

While we have only discussed `p distance and angle embeddings in their various
forms, there exist embeddings for more exotic distance metrics, such as the edit
distance [5, 8, 42, 44]. Furthermore, while JL embeddings and the RIP preserve `2
distances, there is a large body of work in preserving other similarity measurements,
such as `p distances for various p’s [32,35,36,45,46]. It should be noted that in some
cases, such as embedding the `1 distance into a smaller `1 space, such embeddings
have been proven impossible [22]. Still, even in such cases, embeddings have been
developed that hold with high, but not exponentially decreasing, probability [32].

A principal motivation for dimensionality reduction is often a reduction in com-
putational complexity. However, the cost of storing and using a dense, fully ran-
domized, embedding matrix can often be prohibitive. Fast transforms have been
developed in a number of cases [4, 24, 57], enabling efficient computation of the
transform, often without explicitly storing the matrix but using an algorithm, such
as the fast Fourier transform (FFT). Still, even when the computation is efficient and
the cost of storing the matrix is mitigated, the complexity of using the embedding
for very large data retrieval can sometimes be daunting. While the dimensionality
reduction definitely helps, the amount of the data, i.e., the number of data points,
can be such that search is impossible even if the complexity is linear in the amount
of data.

In such cases, locality-sensitive hashing (LSH) methods—which significantly
reduce the computational complexity of near-neighbor computation—can be very
helpful [6, 26, 33]. These methods are intimately connected to randomized embed-
dings. The LSH literature shares a lot of the tools, especially with quantized em-
beddings, such as randomized projections, dithering and quantization. The goal,
however, is different. Given a query point, LSH will return its near neighbors very
efficiently, using O(1) computation. This efficiency comes at a cost: no attempt is
made to represent the distances between neighbors. When LSH is used to compare
signals it only provides a binary decision, namely whether the distance between the
signals is smaller than a radius or not. There is no guarantee that further informa-
tion will be preserved. Thus, LSH may not be suitable for applications that require
more accurate distance information. Still, the similarity of the methods suggests
that some of the quantized embedding designs can be used as LSH functions. While
there are examples of such use, [39], this is still an underdeveloped connection, es-
pecially for recent embedding designs. Techniques that learn a hash, such as spectral
hashing [56] and LDAHash [55], also have strong similarities with embeddings and
embedding learning.

Of course, this is a rich topic and it is impossible to exhaustively cover in this
chapter. Our hope is that our development exposes the basic principles, some of the
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foundational work, and some interesting recent developments. Our goal is to expose
embeddings to a wider community, establishing them as an important tool, essential
in the belt of any data scientist.
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