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ABSTRACT. Approaches to signal representation and coding theory have traditionally focused on how to best represent
signals using parsimonious representations that incur the lowest possible distortion. Classical examples include linear
and non-linear approximations, sparse representations, and rate-distortion theory. Very often, however, the goal of pro-
cessing is to extract specific information from the signal, and the distortion should be measured on the extracted infor-
mation. The corresponding representation should, therefore, represent that information as parsimoniously as possible,
without necessarily accurately representing the signal itself.

In this paper, we examine the problem of encoding signals such that sufficient information is preserved about their
pairwise distances and their inner products. For that goal, we consider randomized embeddings as an encoding mech-
anism and provide a framework to analyze their performance. We also demonstrate that it is possible to design the em-
bedding such that it represents different ranges of distances with different precision. These embeddings also allow the
computation of kernel inner products with control on their inner product-preserving properties. Our results provide a
broad framework to design and analyze embeddings, and generalize existing results in this area, such as random Fourier
kernels and universal embeddings.

1. INTRODUCTION

Signal representation theory and practice have primarily focused on how to best represent or encode a signal
while incurring the smallest possible distortion. For example, image or video representations typically aim to
minimize the distortion in the signal so that the visual quality of the signal is maintained when displayed to a user.
Quite often, however, the user of a signal is not a human observer, but an algorithm extracting some information
about the signal. In this case, the goal is different: the representation should not destroy the information that the
algorithm requires, even if the signal itself cannot be completely recovered.

In this paper, we examine signal representations that preserve aspects of the signal’s geometry but not necessar-
ily the signal itself. Our approach exploits the geometry-preserving properties of randomized embeddings. Specif-
ically, we develop a framework that generalizes well-known embeddings in a manner that enables the design and
control of the distance distortion and the resulting inner product kernel. The results in this paper extend and gen-
eralize recently developed theory for efficient universal quantization and universal quantized embeddings [12, 16–
18], and random Fourier kernels [64, 65]. We demonstrate and analyze such representations using a very general
approach, that can encompass continuous and quantized embeddings.

As we first reported in [16, 18], representations based on universal embeddings—which are special cases of
our development—can be used as a geometry-preserving coding mechanism in image retrieval and classification
applications. We demonstrated that we are able to improve compression performance up to 25% over previous
embedding-based approaches [51, 75], including our own earlier work [48]. The main advantage of our approach is
the ability to control the range of distances best preserved by the embeddings, so that we do not represent distance
ranges that are not important to the application at hand. In most inference applications it is only necessary to
represent distances up to a certain radius, as required by the algorithm, and not farther. Thus, bits are not wasted
in coding distances larger than necessary.

1.1. Motivation. Our work is partly motivated by cloud-based image retrieval and classification applications, such
as augmented reality. As we discuss in [16, 18, 48], augmented reality and other image retrieval and classification
applications can benefit significantly by efficient coding of the geometry of the signal space and of the geometric
relationships between signals.

In typical cloud-based image retrieval applications, a client transmits to a cloud server a query image acquired
by the user, or features extracted from that image, requesting more information on the objects in the image. The
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FIGURE 1. Example embeddings designed and analyzed in this paper; each example provides
different distance distortion properties, according to application requirements.

server extracts features, if necessary, and uses those to execute the query. The query typically drives a machine
learning algorithm, such as nearest neighbor search or support vector machines (SVMs), searching the database
for metadata associated with those features. The query typically returns information such as the object class, the
object identity, or associated information about the object. This search should be computationally efficient at the
client and the database server, and the transmission should be bandwidth-efficient.

While our example application uses nearest-neighbor search and SVMs for classification and inference, our
goal is to develop a framework that is agnostic to the underlying mechanism, as long as this mechanism relies on
signal geometry for its functioning. Thus, most classical machine learning techniques, such as regressions, mixture
models, spectral clustering and deep learning, can immediately exploit our representations. All that is necessary
in order to appropriately design the embedding is an understanding of which signal distances should be preserved
for the particular application.

Our hope is that this framework will become a useful addition to a system designer’s tool-belt, providing meth-
ods that can be layered with other machine learning primitives. In this paper, we concentrate on one particular
method for designing geometry-preserving embeddings and develop a general method to analyze them. However,
some of the theoretical tools developed here can be used in more general settings and applications.

Examples of the embeddings we can design and analyze using our tools are illustrated in Fig. 1. Conventional
Johnson-Lindenstrauss embeddings, first introduced in [44], preserve all ranges of distances undistorted, as shown
in Fig. 1(a). Instead, universal quantized embeddings, introduced in [16, 18] and shown in Fig. 1(b), distort dis-
tances such that all distances beyond a range appear as the same in the embedding. Finally, as shown in Fig. 1(c),
we can design more general distortions of the signal geometry, mapping different ranges of signal distances to dif-
ferent ranges of embedding distances. Such selective distortions allow the embedding to preserve different ranges
of distances with different accuracy, according to application demands.

1.2. Contributions. Our paper contributes several results toward establishing embeddings as general representa-
tions of signal geometry:

• We introduce a generalized definition and characterization of geometry-preserving embeddings which
allows for selective distortions in the signal geometry. These distortions are captured using a distance
map that describes how distances in the original signal space are distorted in the embedding space. This
definition covers a large number of existing embeddings, as well as more general designs, and enables
analysis of the embedding characteristics given the distance map.

• We develop a very general framework to extend embeddings to infinite sets, such as sparse signals or man-
ifolds, even if the mapping function is discontinuous. Our approach is fundamentally very similar to es-
tablished approaches using set coverings. However, these methods fail if the embedding function is not
continuous, e.g., due to quantization. The tools we introduce extend the notion of Lipschitz continuity to
a large variety of discontinuous functions in a way that enables proofs using covering arguments.

• We demonstrate a method to design randomized embeddings such that they achieve the desired distor-
tions in the geometry of the space. The design we describe generalizes existing embedding constructions,
such as the random Fourier features [65], and universal quantized embeddings [12, 16–18].

• We present an analysis of the embedding ambiguity in the context of the distance map. We characterize
this ambiguity from a new perspective: we assume the embedding is used as a representation of the origi-
nal signal set. Current embedding guarantees describe the ambiguity in the embedding space, as opposed
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to the signal set. While the two are equivalent in many well-known cases, they differ quite often, especially
if the embedding distorts the signal geometry.

• We establish a connection between distance embeddings and kernel methods, demonstrating that the
distortion of the distance map performed by the embedding is equivalent to the distortion performed by a
kernel inner product.

• We provide an analysis of multibit universal embeddings and a generalization of binary universal embed-
dings to infinite sets, such as sparse signals or manifolds. These generalizations establish new results in
this area and serve as examples of how our developments can be used in practice.

1.3. Related Work. The best known embeddings are due to Johnson and Lindenstrauss (J-L) [44], which preserve
`2 distances of point clouds. A significant body of work has been devoted to developing such embeddings using
a variety of randomizations and for a variety of applications [1, 25]. Their importance was re-established recently
thanks to the emergence of compressive sensing (CS) [21, 23, 29]. The Restricted Isometry Property (RIP), which
plays a central role in CS theory, is essentially a restatement of the JL property, but applied to unions of signal sub-
spaces instead of point clouds [8, 22]. Consequently, several connections between the two have been established.
In addition to the RIP, extensions of the J-L lemma to other infinite sets, such as manifolds [9, 19, 28, 31, 63] and
unions of subspaces [7, 10, 19, 28, 32, 63], have also been established.

Significant literature has also studied variations of J-L embeddings. For example, in a number of acquisition
systems and coding applications, it is necessary to quantize the representations. Quantized J-L embeddings have
been well studied [39, 40, 48], especially down to 1-bit per representation coefficient [43, 60–62]. Furthermore,
while J-L embeddings and the RIP preserve `2 distances, there is a large body of work in preserving other similarity
measurements, such as `p distances for various p’s [37, 41, 42, 59], edit distance [3, 6, 47, 57], and angle, i.e.,
correlation, between signals [13–15].

A common thread in the aforementioned body of work is that distances or other similarity measures are pre-
served indiscriminately. This is in sharp contrast to our work, which allows the design of embeddings that repre-
sent some distances better than others, with control on that design. For example, in our motivating applications
in the area of image retrieval, we design embeddings that only encode a short range of distances, as necessary for
nearest-neighbor computation and classification. A very narrow notion of locality was discussed in very recent
work, fit for the development in that paper [59]. That definition, however, does not capture the richer set of locality
properties presented in our line of work.

Recent work has also provided classification guarantees for J-L embeddings [5] on very particular signal models.
In particular, it is shown that separated convex ellipsoids remain separated when randomly projected to a space
with sufficient dimensions. Our work significantly enhances the available design space compared to J-L embed-
dings. It should, thus, be possible to establish similar results. However, it is not clear that the techniques in [5] can
be used with our designs. Thus, establishing results of similar type remains an interesting problem.

Many of our proof techniques rely on well-established concentration of measure arguments and methods com-
mon in the embedding literature, e.g., see [1, 8, 25, 43]. However, we provide a new approach to handle quantiza-
tion or other discontinuous distortions, which can significantly expand the applicability of established approaches.
Our main novelty in computing the embedding is the introduction of a non-linear, periodic distortion that enables
notable control over the behavior of the embedding. We also develop a framework to analyze the performance of
the embedding in preserving distances which, in contrast to the existing literature, takes into consideration the
distortion as manifested in the original signal distance, as opposed to the embedded distance.

Our work is also related to locality-sensitive hashing (LSH) methods, which significantly reduce the compu-
tational complexity of near-neighbor computation [4, 26, 38]. The LSH literature shares a lot of the tools with the
embeddings literature, such as randomized projections, dithering and quantization, but the goal is different: given
a query point, LSH will return its near neighbors very efficiently, with O(1) computation. This efficiency comes at
a cost: no attempt is made to represent the distances of neighbors. When used to compare signals it only provides
a binary decision, whether the distance of the signals is smaller than a threshold or not. This makes it unsuitable
for applications that require more accurate distance information.

Our design does not explicitly take retrieval complexity into account; we expect the underlying retrieval ma-
chinery to consider complexity issues. Nevertheless, our methods provide dimensionality and bit-rate reduction,
which are tightly coupled to complexity. Furthermore, some of our embedding techniques could be used in the
context of an LSH-based scheme; some of the LSH techniques in [4, 26, 38] are reminiscent of our approach. It
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should also be possible to design mechanisms that reduce complexity which explicitly exploit our methods, for ex-
ample extending the hierarchical approach in [11]. However, such designs, although quite interesting, are beyond
the scope of this paper.

Our work is of similar flavor to [64, 65], which use randomized embeddings to efficiently approximate specific
kernel computations. The results we present generalize these approaches, by allowing control over the distance
map in the kernel and the ambiguity of the distance preservation. We further provide a general approach to un-
derstand the approximation properties of the embedding and its behavior under quantization.

There is also a large body of work focused on learning embeddings from available data, e.g., see [36, 67, 69, 74].
Such approaches exploit a computationally expensive training stage to improve embedding performance with
respect to its distance-preserving properties. Still, the embedding guarantees are only applicable to data similar
to the training data; the embedding might not perform well on different sets. Instead, our approach relies on a
randomization independent of the data. Our designs are universal in the sense that they work on any data set
with overwhelming probability, as long as the embedding parameters are drawn independently of the dataset. Of
course, using data for training is a promising avenue and a potentially useful extension of our work. However, we
do not attempt this in this paper.

1.4. Notation. In the remainder of the paper we use regular typeface, e.g., x and y , to denote scalar quantities.
Lowercase boldface such as x denotes vectors and uppercase boldface such as A denotes matrices. Functions are
denoted using regular lowercase typefaces, e.g., g (·). Unless explicitly noted, all functions are scalar functions of
one variable. In abuse of notation, a vector input to such functions, e.g., g (x) means that the function is applied
element-wise to all the elements of x. Sets and vector spaces are denoted using calligraphic fonts, e.g., W , S .

The Fourier transform of a function h(x) is defined as H(ξ) = ∫ +∞
−∞ h(x)e−2πıxξd x, where ı =p−1 is the imagi-

nary unit. Similarly, the characteristic function of a probability density function fx (x) is defined asφx (t ) = E
[
e ı t x

]=∫ +∞
−∞ fx (x)e ıxξd x. Thus, the Fourier transform of the density is related to its characteristic function: Fx (ξ) =φx (−2πξ) =
φ∗

x (2πξ), where (·)∗ denotes complex conjugation. The Fourier series of a periodic function with period 1 is defined
as Hk = ∫ 1

0 h(x)e−2πıxk d x, where h(x) = h(x+1). Conditional distributions and corresponding characteristic func-
tions are denoted using ·|· in their argument, e.g., fx (x|y) and φx (x|y).

1.5. Outline. The next section contains a brief background on embeddings and universal scalar quantization, es-
tablishing notation and definitions. It also reviews Lipschitz continuity and introduces a generalization that will
prove very useful in our subsequent development, especially for quantized embeddings. Section 3 provides an
overview of how embedding results are typically established on point clouds using concentration of measure argu-
ments, and introduces our framework to generalize such embeddings—both quantized and unquantized ones—to
continuous sets. Section 4 demonstrates that embeddings and embedding maps can be designed to preserve dif-
ferent ranges of distances with different accuracy by establishing such a design, as well as the tools to analyze its
properties.

Examples of embeddings established using our tools are provided in Sec. 5. These include quantized Johnson-
Lindenstrauss embeddings, and binary and multibit universal embeddings. These examples demonstrate how our
tools can be applied. They also establish some new useful results for universal embeddings. In addition, Sec. 6
provides simulations and application examples that validate our theory and demonstrate how it can be used in
practice. Finally, Sec. 7 discusses our results and concludes. For most of our results, in order to improve the flow
and readability of our paper, we have relegated the proofs to appendices.

2. DEFINITIONS AND BACKGROUND

2.1. Randomized Linear Embeddings. An embedding is a transformation of a set of signals in a high-dimensional
space to a (typically) lower-dimensional one such that some aspects of the geometry of the set are preserved, as
depicted in Fig. 2(a). Since the set geometry is preserved, distance computations can be performed directly on
the low-dimensional—and often low bitrate—embeddings, rather than the underlying signals. For the purposes of
this paper, we define an embedding as follows.

Definition 2.1. A function f : S →W is a (g ,δ,ε) embedding of S into W if, for all x,y ∈S , it satisfies

(1−δ)g
(
dS (x,y)

)−ε≤ dW

(
f (x), f (y)

)≤ (1+δ)g
(
dS (x,y)

)+ε. (2.1)
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FIGURE 2. (a) Distance-preserving embeddings approximately preserve a function g (·) of the dis-
tance, allowing distances to be computed in a space that (typically) has fewer dimensions and
produce signals that often require lower transmission rate. (b) For most embeddings, such as JL
Embeddings, this function is linear, as shown in blue. For the universal quantized embeddings
discussed in this paper, the function is approximately linear initially and quickly flattens out after
a certain distance D0, as shown in red.

In this definition, g : R→ R is an invertible function mapping distances dS (·, ·) in S to distances dW (·, ·) in W

and δ and ε quantify, respectively, the multiplicative and the additive ambiguity of the map1. We will often refer to
g (·) as the distance map and to f (·) as the embedding map. In most known embeddings, such as the ones discussed
in this section, the distance map is the identity g (d) = d or a simple scaling.

For most of the development we only require that the distances dS (·, ·) and dW (·, ·) satisfy the triangle inequality.
Specifically, the distances we explore are the commonly used `1, `2 and Hamming distance, although most of the
results are more general.

The best known embeddings are the Johnson-Lindenstrauss embeddings [44]. These are functions f : S →RM

from a finite set of signals S ⊂RN to a M-dimensional vector space such that, given two signals x and y in S , their
images satisfy:

(1−δ)‖x−y‖2
2 ≤ ‖ f (x)− f (y)‖2

2 ≤ (1+δ)‖x−y‖2
2. (2.2)

In other words, these embeddings preserve Euclidean, i.e., `2, distances of point clouds within a small factor,
measured by δ, and using the identity as a distance map.

Johnson and Lindenstrauss demonstrated that a distance-preserving embedding, as described above, exists in
a space of dimension M = O( 1

δ2 logL), where L is the number of signals in S (its cardinality) and δ the desired
tolerance in the embedding. Remarkably, M is independent of N , the dimensionality of the signal set S . Subse-
quent work showed that it is straightforward to compute such embeddings using a linear mapping. In particular,
the function f (x) = Ax, where A is a M ×N matrix whose entries are drawn randomly from specific distributions,

satisfies (2.2) for all x,y ∈S with probability 1−c1e logL−c2δ
2M , for some universal constants c1,c2, where the prob-

ability is with respect to the measure of A. Commonly used distributions for the entries of A are i.i.d. Gaussian,
i.i.d. Rademacher, or i.i.d. uniform [1, 25].

More recently, in the context of compressive sensing, such linear embeddings have been shown to embed infi-
nite sets of signals. For example, the restricted isometry property (RIP) is an embedding of K -sparse signals and
has been shown to be achievable with M = O(K log(N /K )) [8, 22]. Similar properties have been shown for other
signal set models, such as more general unions of subspaces [7, 10, 19, 28, 32, 63] and manifolds [9, 19, 28, 31, 63].
Typically, these generalizations are established by first proving that the embedding holds in a sufficiently dense
point cloud on the signal set and exploiting linearity and smoothness to extend it to all the points of the set.

Such embeddings result in a significant dimensionality reduction. However, dimensionality reduction does not
immediately produce rate reduction; the embeddings must be quantized for transmission and, if the quantiza-
tion is not well designed, performance suffers [48]. In particular, when combined with scalar quantization, the
embeddings satisfy

(1−δ)‖x−y‖2 −ε≤ ‖ f (x)− f (y)‖2 ≤ (1+δ)‖x−y‖2 +ε, (2.3)

1Often it makes more sense to separate the upper and lower multiplicative bounds (1±δ) to different constants A,B . This does not affect
the subsequent development but encumbers the notation, so we avoid it in this paper.
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where ε∝ 2−B is the quantizer step size, decreasing exponentially with the number of bits used per dimension,
B . On the other hand, δ is a function of M , the projection’s dimensionality, and scales approximately as 1/

p
M ,

as is the case for the J-L embedding. Recent work has refined these bounds, demonstrating that ε and δ decrease
together as the number of measurements decreases when considering an `2 embedding into `1 [39, 40]. In ad-
dition, [39] establishes a non-linear distance map g for quantized linear embeddings of `2 into `2, that becomes
linear for large distances. In the extreme case of 1-bit scalar quantization, the quantizer only keeps the sign of each
measurement. Thus, a binary embedding does not preserve signal amplitudes, and therefore, `2 distances. Still, it
does preserve angles, or equivalently, correlation coefficients [43, 60–62].

An intermediate case is examined in [27, 35, 46] in the context of recovering sparse signals from saturated mea-
surements. In [46] it is shown that limited saturation and removal of the measurements preserves the embedding
properties. In addition, [35] demonstrates that, with respect to recovery, saturated measurements behave similarly
to 1-bit scalar quantization when the saturation is significant. However, the result does not establish an embed-
ding; it only describes recovery properties. Still, an embedding result of similar flavor would be desirable and
should be possible.

When designing a quantized embedding, the total rate is determined by the dimensionality of the projection
and the number of bits used per dimension: R = MB . For a fixed bit budget R, as the dimensionality M increases,
the accuracy of the embedding before quantization, as reflected in δ, is increased. But to keep the rate fixed, the
number of bits per dimension should also decrease, which decreases the accuracy due to quantization, reflected
in ε. This non-trivial trade-off is explored in detail in [48]; at a constant rate a multibit quantizer outperforms the
1-bit quantizers examined in earlier literature [51, 75].

2.2. Universal Quantization and Embeddings. Universal scalar quantization, first introduced in [12], fundamen-
tally revisits scalar quantization and redesigns the quantizer to have non-contiguous quantization regions. This
approach also relies on a Johnson-Lindenstrauss style projection, followed by scaling, dithering and scalar quan-
tization:

f (x) =Q(∆−1(Ax+w)), (2.4)

where A is a M ×N random matrix with N (0,σ2)-distributed, i.i.d. elements,∆−1 is an element-wise scaling factor
by a scalar ∆, w a length-M dither vector with i.i.d. elements, uniformly distributed in [0,2B∆], and Q(·) a B-bit
scalar quantizer operating element-wise on its input.

The breakthrough feature in this method is the modified B-bit scalar quantizer, designed to be a periodic binary
function with non-contiguous quantization intervals, as shown in Fig. 3(a) for B = 1 (top) and B = 2 (bottom).
The quantizer can be thought of as a regular uniform quantizer, computing a multi-bit representation of a signal
and preserving only the least significant bits (LSB) of the representation. For example, for a 1-bit quantizer, scalar
values in [2l ,2l+1) quantize to 1 and scalar values in [2l+1,2(l+1)), for any integer l , quantize to 0. If Q(·) is a 1-bit
quantizer, this method encodes using as many bits as the rows of A, i.e., M bits, and does not require subsequent
entropy coding.

A large part of the development in this paper is inspired by (and generalizes) the periodicity of the quantization
function in binary (1-bit) universal quantization. A multi-bit generalization of the universal quantizer is shown in
the bottom of Fig. 3(a) but has not, to-date, been analyzed or explored.

As discussed in [12], the modified binary quantizer enables efficient universal encoding of signals. Furthermore,
this quantization method is also an embedding of finite signal sets [17]. Specifically, on a set S with L points, for
all x,y ∈S , the embedding satisfies

g
(∥∥x−y

∥∥
2

)−ε≤ dH
(

f (x), f (y)
)≤ g

(∥∥x−y
∥∥

2

)+ε, (2.5)

with probability 1−2e2logL−2ε2M with respect to the measure of A and w. In (2.5), dH (·, ·) is the Hamming distance
of the embedded signals, the function f (·) is as specified in (2.4), and g (d) is the map

g (d) = 1

2
−

+∞∑
i=0

e
−

(
π(2i+1)σdp

2∆

)2

(π(i +1/2))2 , (2.6)
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FIGURE 3. (a) This non-monotonic quantization function Q(·) allows for universal rate-efficient
scalar quantization. This function is equivalent to using a classical multibit scalar quantizer,
and preserving only the least significant bits while discarding all other bits. 1-bit shown on top,
multi-bit shown on bottom (b) The embedding map g (d) and its bounds produced by the 1-bit
quantization function in (a). (c) Experimental verification of the embedding for small and large
∆ in high (left) and low (right) bitrates.

which can be bounded using,

g (d) ≥ 1

2
− 1

2
e
−

(
πσdp

2∆

)2

, (2.7)

g (d) ≤ 1

2
− 4

π2 e
−

(
πσdp

2∆

)2

, (2.8)

g (d) ≤
√

2

π

σd

∆
, (2.9)

as shown in Fig. 3(b). The map is approximately linear for small d and becomes a constant equal to 1/2 expo-
nentially fast for large d , greater than a distance threshold D0. The slope of the linear section and the distance
threshold D0 is determined by the parameter ratioσ/∆. In other words, the embedding ensures that the Hamming
distance of the embedded signals is approximately proportional to the `2 distance between the original signals, as

long as that `2 distance was smaller than D0. Note that a piecewise linear function with slope
√

2
π
σ
∆ for d ≤ D0 and

slope equal to zero for d > D0 is a very good approximation to (2.6), in addition to being an upper bound.
To obtain a fixed bound on the probability of failure, the additive ambiguity ε in (2.5) scales as ε∝ 1/

p
M , similar

to the constant δ in the multiplicative (1±δ) factor in J-L embeddings. It should be noted, however, that universal
embeddings use 1 bit per projection dimension, for a total rate of R = M . The trade-off between B and M under
constant R exhibited by quantized J-L embeddings does not exist under 1-bit universal embeddings. Still, there is a
performance trade-off, controlled by the choice of∆ in (2.4), which is explored in [18] and discussed in subsequent
sections.

Figure 3(c) demonstrates experimentally and provides intuition on how the embedding behaves for smaller
(red) and larger (blue)∆ and for higher (left) and lower (right) bitrates. The figure plots the embedding (Hamming)
distance as a function of the signal distance for randomly generated pairs of signals. The thickness of the curve is
quantified by ε, whereas the slope of the upward sloping part is quantified by ∆.
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Although universal embeddings perform very well in practice, a few theoretical issues have not been resolved
to date. One of the most interesting questions is the extension to a multi-bit quantizer. While such an extension,
using the quantizer in the bottom of Fig. 3(a) is described in [12], it has not been analyzed and guarantees have
not been provided. The techniques used to provide the universal embeddings guarantee can fail or become very
tedious for a multi-bit analysis.

Furthermore, the embedding guarantee has been shown in [17] to hold for finite point clouds and not for infinite
sets, such as sparse signals or manifolds. In [12] it was shown that a different guarantee, on the distance of signals
that map to exactly the same binary vector, can be provided for such sets. However, a general embedding guaran-
tee, similar to the extensions of the Johnson-Lindenstrauss lemma to the RIP [8] and to manifolds [9], does not yet
exist. For a number of real-world signals—including, for example, images lying on articulation manifolds—such a
guarantee is often desirable, if not necessary.

The development we present in the remainder of this paper addresses both of these issues. Specifically, Sec. 3
provides a general description of how concentration of measure inequalities are typically used to establish the
embedding guarantees and how these guarantees can be extended to hold for fairly general embedding designs in
infinite sets. It also examines the effect of quantization on the embedding guarantee. Section 4 describes a general
embedding design approach which, combined with the development in Sec. 3, provides the desired guarantees
for multi-bit universal embeddings, of which binary universal embeddings become a special case. The details are
described in Sec. 5, which uses universal embeddings as an example application of the general theory.

Although not immediately relevant to this work, an information-theoretic argument guarantees that using bi-
nary universal embeddings while querying a database can preserve the query’s privacy [17]. This aspect is not
explored in this work for the more general case. Although we are confident that such guarantees can be provided,
at least for multi-bit universal embeddings, we defer such a development to a separate publication.

2.3. Lipschitz Continuity. A very useful tool in the subsequent development is Lipschitz Continuity. Lipschitz
continuity enables us to bound how abruptly a function may vary as its input varies.

Definition 2.2. A function f : S →W is Lipschitz-continuous with Lipschitz constant K , if, for all x,y ∈S :

dW ( f (x), f (y)) ≤ K dS (x,y) (2.10)

If a function is Lipschitz continuous with constant K , then it is also Lipschitz continuous for any constant K ′ ≥
K . Often, the smallest K that satisfies the Lipscitz property is referred to as the “best” Lipschitz constant for this
function.

While a number of functions we consider in the remainder of this paper are Lipschitz continuous, some very
interesting ones are not. For example, quantization functions such as the ones in Fig. 3(a), are not Lipschitz con-
tinuous. Still, they do exhibit piece-wise continuity properties that we should be able to exploit and characterize.
To that end, we introduce a generalization of Lipschitz continuity, which we term T -part Lipschitz continuity.

To characterize T -part Lipschitz continuity, we assume that the function f (·) operates in a compact set S that
can be partitioned to T subsets, such that f (·) is Lipschitz continuous when its domain is restricted to each of the
T subsets.

Definition 2.3. A function f : S → W is T -part Lipschitz continuous over S with Lipschitz constant K if there
exists a finite partition of S to T sets St , t = 1, . . . ,T such that for all t and for all pairs x,y in St the Lipschitz
property holds: d( f (x), (y)) ≤ K d(x,y).

Definition 2.4. A function f : S →W is T -part constant if it is T -part Lipschitz continuous with K = 0.

Note that T -part Lipschitz continuity is a much more permissive condition compared to piece-wise continuity,
as typically understood and defined. For example, the indicator function of rational numbers

IQ(x) =
{

1, if x is rational
0, if x is irrational

(2.11)

is nowhere continuous and definitely not Lipschitz continuous. However, it is 2-part constant, as we can split its
domain, R to two sets S1 =Q and S2 =R\Q over which IQ(x) is constant, i.e., K = 0. Of course, the universal quan-
tization functions in Fig. 3(a) are 2B -part Lipschitz constant, where B is the number of bits available to represent
the quantization bins.
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A function that is piece-wise continuous with a finite number of pieces, T , is also T -part Lipschitz continuous.
However, piece-wise continuous functions with an infinite number of pieces may not fit our definition. A conven-
tional infinite uniform quantizer, for example, is not T -part Lipschitz continuous. If, instead, the quantizer has
positive and negative saturation points, then there is a finite number of quantization intervals, and the function
becomes T -part constant, with T equal to the number of quantization levels. Typically T = 2B , where B is the
number of quantization bits.

We should note that 1-part Lipschitz continuity coincides with the traditional definition of Lipschitz continuity.
Furthermore, a T -part Lipschitz continuous function is also T + 1-part Lipschitz with the same constant K . We
use the term “exactly T -part Lipschitz”, when T represents the minimum number of partitions that can be used to
satisfy the definition of T -part Lipschitz continuity.

Definition 2.5. A function f : S → W , where S is a compact set, is exactly T -part Lipschitz continuous over S

with Lipschitz constant K if it is T -part Lipschitz continuous with that constant but is not (T −1)-part Lipschitz
continuous with the same constant.

3. PROBABILISTIC EMBEDDING CONSTRUCTION

As mentioned above, most embedding literature relies on randomized constructions. Typically, such embed-
dings are demonstrated on finite sets and often extended to cover infinite sets. However the extension is often not
trivial. Furthermore, the tools developed in the literature, e.g., [8, 9, 43, 64], are typically specific to each embed-
ding design. Departing from this embedding-specific approach, we now develop general methods that will allow
us to extend a wide variety of embedding designs from point clouds to infinite signal sets.

3.1. Embeddings and Concentration of Measure. Our goal in this paper is to present a fairly general framework
to design and analyze embeddings that approximately preserve distances between signals. Typically, such em-
beddings are designed in a probabilistic manner by drawing the embedding function f randomly from a family of
functions. For example, in various constructions of Johnson-Lindenstrauss embeddings or the Restricted Isome-
try Property (RIP) the function is a linear map f (x) = Ax, with the elements of A drawn randomly from a variety
of possible distributions [1, 8, 22, 24, 25]. More recently, in quantized and phase embeddings, the linear map is
followed by a quantization, phase-extraction, or some other non-linear operation [13–17, 39, 40, 43, 48, 53, 60–62].

Since the embedding function is randomized, we can only prove that the embedding is a (g ,δ,ε) embedding
with high probability. Most proofs rely on concentration of measure arguments to show that (2.1) holds on a pair
of points x,y ∈S with high probability. Typically, the failure probability decays exponentially with the number of
measurements, i.e., with the dimensionality of the embedding space M = dim(W ). In other words, the embedding
fails on a pair of points with probability bounded byΩ(e−M w(δ,ε)), where w(δ,ε) is an increasing function of ε and
δ that quantifies the concentration of measure exhibited by the randomized construction.

Once the embedding guarantee is established for a pair of signals, a union bound can be used to extend it to a
finite set of signals. If the set S is finite, containing Q points, then the probability that the embedding fails is upper
bounded byΩ(Q2e−M w(δ,ε)) =Ω(e2logQ−M w(δ,ε)), which decreases exponentially with M , as long as M =O(log(Q)).

Unfortunately, this union bounding approach does not work for infinite sets, such as signal spaces or sparse
signals. Instead, to establish (2.1) for such sets, a covering of the set is constructed using a finite number of ε-balls.
The concentration of measure is established for the centers of balls and is then extended to all points of the balls
using the continuity properties of the embedding map. For example, [8] exploits the properties of the distance
metric to establish the RIP for all K -sparse signals. This approach can be used if the distance map is the identity,
g (d) = d , but does not generalize very well. In the next section, we describe a more general approach that can
be used for arbitrary Lipschitz-continuous distance and embedding maps. More recent work exploits a chaining
argument [70] to tighten the bounds for linear embeddings [19, 28, 31, 63]. Whether a chaining approach can be
used to improve the bounds for more general embeddings, such as the ones described here, is an interesting and
open question.

3.2. Embedding of Infinite Sets Using Continuous Maps. To exploit Lipschitz continuity, we start with the ran-
domized embeddings as described in the previous section, i.e., for which we can show that given a pair of points
x,y ∈ S , the embedding guarantee (2.1) holds with probability greater than 1− ce−M w(δ,ε). We also assume the
embedding map g (d) is Lipschitz-continuous with constant Kg and that the embedding map f (·) is Lipschitz-
continuous with constant K f . Next, we use CS

ε to denote the covering number of the signal set S , i.e., the smallest
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number of points q ∈S s.t. for all x ∈S , infq ‖x−q‖ ≤ ε. Its logarithm, ES
ε = logCS

ε is the Kolmogorov, or metric,
ε-entropy of the set. Appendix A proves the following.

Theorem 3.1. Consider a signal set S with r -covering number CS
r and a (g ,δ,ε) probabilistic embedding to an M-

dimensional space that fails with probability smaller than ce−M w(δ,ε) on a pair of points. If the embedding map f (·)
is K f -Lipschitz continuous and the distance map g (·) is Kg -Lipschitz continuous, then for someα> 0 the embedding

is a (g ,δ,ε+α) embedding that holds with probability greater than 1−ce2ES
r −M w(δ,ε) on all pairs of signals x,y in S ,

where r = α
(1+δ)2Kg +2K f

.

As typical with such proofs, the constants are difficult to pin down accurately. However, the main takeaway
is that the embeddings preserve distances of an infinite set as long as the number of measurements M is on the
order of the Kolmogorov entropy of the set for a radius that depends on the desired accuracy. For example, if
the set is bounded-norm signals in RN , then ES

r = O(N log(1+2/r )). For bounded-norm K -sparse signals in RN ,
ES

r =O(K log(N /r K )). An extensive discussion on Kolmogorov entropy and other set complexity measures can be
found, for example, in [73].

We should note that this theorem introduces an additive ambiguity α, even if the original embedding has ε= 0.
For general embedding maps, we do not believe this additive ambiguity can be eliminated. In the special case of
linear embedding functions f (·) and linear distance maps g (·) the additive constant can be eliminated using proof
techniques such as the ones in, e.g., [8, 10].

3.3. Embedding of Infinite Sets Using Discontinuous Maps. To extend the mapping to discontinuous embed-
dings we separate the randomized embedding f (·) into its components fm(·), m = 1, . . . , M , and examine how the
embedding behaves on balls Br /2(x) of diameter r , i.e., radius r /2. In particular, we first examine the behavior of
each function component fm(·) with domain restricted to a given ball Br /2(x) with respect to its T -part Lipschitz
continuity.

Assuming that each function fm : Br /2(x) → R is exactly Tm-part Lipschitz over the ball, then we can partition
the ball into Tm sets Stm , tm = 1, . . . ,Tm , over which the fm(·) is Lipschitz continuous. We can then define St1,...,tM =
St1 ∩ . . .∩StM , which is a partition of Br /2(x) of T1× . . .×TM sets such that all fm are Lipschitz continuous over each
St1,...,tM .

Next, we need to quantify Tm for each m. Since the embedding is randomized, we use PT to denote the proba-
bility that fm(·) is exactly T -part Lipschitz over a ball Br /2(x). We assume that the probability that fm(·) is exactly
T -part Lipschitz over Br /2(x) is independent from the probability that fm′ (·),m 6= m′ is T -part Lipschitz over the
same Br /2(x). This, for example, is ensured if fm(·) is drawn independently for each m, as is typically the case.
We assume that the probability PT is a decreasing function of the radius r of the ball, and does not depend on the
selection of the ball center x, or on any other ball parameter or property. We also select a maximum Tmax beyond
which the probability that a function fm(·) is exactly T -part Lipschitz continuous, is negligible or zero.

Theorem 3.2. Consider a signal set S with r -covering number CS
r and a (g ,δ,ε) probabilistic embedding to an

M-dimensional space that fails with probability smaller than ce−M w(δ,ε) on a pair of points. If each coordinate of
the embedding map fm(·) is exactly T -part Lipschitz continuous with probability less than PT , as described above,
and the distance map g (·) is Kg -Lipschitz continuous, then the embedding is a (g ,δ,ε+α) embedding that with

probability greater than 1− (ce2ES
r /2+c1M−M w(δ,ε) +Tmaxe−2c2

0 M +PF ) holds on all pairs of signals x,y in S , for any
Tmax, where r = α

(1+δ)2Kg +2K f
, PF =∑∞

T=Tmax+1 PT , c1 =∑Tmax
T=2 PT (1+ c0) logT , and any α< 1.

The proof details can be found in Appendix B.

Assuming PF is negligible, the embedding fails with probability at most ce2ES
r /2+c1M−M w(δ,ε̃−α) +Tmaxe−2c2

0 M +
PF , which decays exponentially with M as long as c1 < w(δ,ε) and M = O(ES

r /2). Note that c1 depends on PT

and, therefore, on r . The inequality holds for sufficiently small r since c1 decreases with r for most randomized
embedding constructions.

While the theorem provides the guarantee with significant generality, in many practical embedding designs
the theorem implies that guarantees established on point clouds and discontinuous maps can be extended to
continuous sets with only a small constant oversampling penalty, compared to the continuous maps analyzed in
the previous section. Section 5.2.2 and Appendix E analyze such an example.
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3.4. Quantized Embeddings. Although quantization of the embedding can be analyzed using the framework we
describe above, it is often more convenient, especially in the case of high-rate quantization to consider it sepa-
rately, as an additional step after the projection.

We examine a (g ,δ,ε) embedding which is subsequently quantized using an M-dimensional vector quantizer
Q(·). We assume the quantization error is bounded, i.e., d(Q(x),x) ≤ EQ . The triangle inequality, |dW ( f (x), f (w))−
dW (Q( f (x)),Q( f (w)))| ≤ 2EQ , implies that the quantized embedding guarantee becomes a (g ,δ,ε+2EQ ) embed-
ding, with guarantee

(1−δ)g
(
dS (x,y)

)−ε−2EQ ≤ dW

(
Q( f (x)),Q( f (y))

)≤ (1+δ)g
(
dS (x,y)

)+ε+2EQ . (3.1)

Theorem 3.3. Consider a (g ,δ,ε) embedding f (·) and a quantizer Q(·) with worst case quantization error EQ , then
the quantized embedding, Q( f (·)), is a (g ,δ,ε+2EQ ) embedding.

In the specific case of a uniform scalar quantizer with quantization interval∆, the M-dimensional quantization
`2 error is bounded by EQ ≤ p

M∆/2, assuming the quantizer is designed such that it does not saturate or such
that the saturation error is negligible. The interval of the quantizer is a function of the number of bits B used
per coefficient ∆ = 2−B+1S, where S is the saturation level of the quantizer. Given a fixed rate to be used by the
embedding, R = MB , the guarantee becomes

(1−δ)g
(
dS (x,y)

)−ε−2−
R
M +1

p
MS

≤ ‖Q( f (x))−Q( f (y))‖2 ≤
(1+δ)g

(
dS (x,y)

)+ε+2−
R
M +1

p
MS. (3.2)

Note that the
p

M factor can often be removed, depending on the normalization of the embedding.
Of course, `2 is not always the appropriate fidelity metric. If the dS (·, ·) corresponds to the `1 distance, the

quantization error is bounded by EQ ≤ M∆/2. Again, with care in the normalization the M factor can be removed.
If, instead, the `∞ norm is desired, the quantization error is bounded by EQ ≤∆/2.

One of the issues to consider in designing quantized embeddings using a uniform scalar quantizer is the trade-
off between the number of bits per dimension and the total number of dimensions used. Since R = MB , increasing
the number of bits per dimension B under a fixed bit budget R, requires decreasing the number of dimensions M .
While the former reduces the error due to quantization, the latter will typically increase the uncertainty in the
embedding by increasing δ and ε.

In the case of randomized embeddings, this trade-off can be quantified through the function w(ε,δ). Given a
fixed probability lower bound to guarantee the embedding, then M = Ω(1/w(ε,δ)). Since w(·, ·) is an increasing
function of ε and δ, which quantify the ambiguity of the embedding, reducing M increases this ambiguity. On the
other hand, the quantization ambiguity, quantified in 2−R/M+2S

p
M decreases with M . This trade-off is explored,

for example, in the context of quantized J-L embeddings in [48, 66]. Although we describe the trade-off for uniform
scalar quantizers, the same issue exists for non-uniform quantizers and for vector quantizers, manifested with
different constants but with the same order of magnitude effects (e.g., see [42]).

Sec. 5 provides examples of quantized embeddings, examining cases where the quantization is analyzed as
described here, i.e., as an additional step after the embedding is performed, as well as cases in which quantization
is analyzed as part of the embedding through the mechanism of T -part Lipschitz functions.

4. EMBEDDING DESIGN AND PERFORMANCE ANALYSIS

4.1. Embedding Design Using a Periodic Map. Having provided all the necessary tools to establish the embedding
properties over a signal set, we next consider a fairly general embedding design. Specifically, we consider the
mapping y = h(Ax+w), where the rows ai of A are randomly chosen from some i.i.d. vector distribution and the
elements of w are chosen from an i.i.d. distribution uniform in [0,1). We denote the projection through A using
u = Ax.

We restrict our attention to functions hg (t ) with finite support, restricted in [0,1) without loss of generality,
and their periodic extension h(t ) with period 1, i.e., such that h(t ) = hg (t ) for t ∈ [0,1) and h(t ) = h(t + 1). We
use Hg (ξ) and H(ξ) to denote their respective Fourier transform, Rhg (τ) and Rh(τ) to denote their deterministic
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autocorrelations, and Phg (ξ) and Ph(ξ) to denote their power spectrum. Their relationship is summarized below.

hg (t ) = 0 if t ∉ [0,1)
F←→ Hg (ξ) (4.1)

h(t ) =
+∞∑

k=−∞
hg (t −k)

F←→ H(ξ) = Hg (ξ)
+∞∑

k=−∞
δ(ξ−k) =

+∞∑
k=−∞

Hkδ(ξ−k) (4.2)

Rhg (τ) =
∫ +∞

−∞
hg (t )hg (t −τ)d t

F←→ Phg (ξ) = |H(ξ)|2 (4.3)

Rh(τ) =
∫ +1

0
h(t )h(t −τ)d t

F←→ Ph(ξ) = |Hg (ξ)|2
+∞∑

k=−∞
δ(ξ−k) =

+∞∑
k=−∞

|Hk |2δ(ξ−k), (4.4)

where Hk = Hg (k) denotes the Fourier series coefficients of h(t ). Note that, to avoid convergence issues, the au-
tocorrelation of periodic functions is defined as the integral over a single period, in contrast to the finite-support
autocorrelation defined as the integral over all R. Although we use the same notation for simplicity, the appro-
priate use should be clear from the context. We further assume that h(t ) is bounded and denote its range using
h̄ = supt h(t )− inft h(t ).

We first examine the behavior of a single coefficient of y, i.e., y = h(〈a,x〉+w), where a is the corresponding row
of A and w the corresponding coefficient of w. If we measure a pair of signals x and x′ at distance d = dS (x−x′)
apart, their (signed) projected distance, denoted l = 〈a,x−x′〉, is a random variable with density conditioned on d
denoted using fl (·|d) and characteristic function denoted usingφl (ξ|d). Then, we can prove the following theorem.

Theorem 4.1. Consider a set S of Q points inRN , measured using y = h(Ax+w), with A, w, and h(t ) as above. Given

ε> 0, with probability greater than 1−e2logQ−2M ε2

h̄4 the following holds

g (d)−ε≤ 1

M

∥∥y−y′
∥∥2

2 ≤ g (d)+ε (4.5)

for all pairs x,x′ ∈S and their corresponding measurements y,y′, where

g (d) = 2
∑
k
|Hk |2(1−φl (2πk|d)). (4.6)

defines the distance map of the embedding.

The proof is provided in Appendix C. Note that φl (0) = 1 for any distribution. Thus, the DC component H0 of
the embedding map does not affect the distance map in (4.6).

To show that this is a (g ,0,ε) embedding, we derive a bound on the `2 distance, instead of its square, which
follows easily from the fact that

p
x ±ε≶p

x ±p
ε:

Corollary 4.1. Consider the signal set S , defined and measured as in Thm. 4.1. Given ε> 0, with probability greater

than 1−e
2logQ−2M

(
ε
h̄

)4

the following holds

g̃ (d)−ε≤ 1p
M

∥∥y−y′
∥∥

2 ≤ g̃ (d)+ε (4.7)

for all pairs x,x′ ∈S and their corresponding measurements y,y′, where g̃ (d) =√
g (d).

In a similar manner, we can establish that E {‖y‖2
2} =∑

k |Hk |2 and, therefore,∑
k
|Hk |2 −ε≤

1

M
‖y‖2

2 ≤
∑
k
|Hk |2 +ε, (4.8)

with probability greater than 1− 2e logQ−2M ε2

h̄ . The proof is similar to the proof of Thm. 4.1, with the differences
discussed in App. C. We omit it here for brevity. However, we should note that, to ensure both (4.5) and (4.8) hold,
the union bound should be taken over both the point pairs and the points in S . Thus, the probability that both

hold is bounded by 1−2e2logQ−2M ε2

h̄ . We should also note that in certain cases, such as binary embeddings, the
value of ‖y‖2

2 can be exactly computed [16].
Of course, using the results of the Section 3 with w(ε) = 2(ε/h̄)4 or w(ε) = 2ε2/h̄4 we can trivially establish the

embedding over infinite sets.
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4.2. Projection Randomization and the Distance Map. There are several choices for the randomization of the
embedding projection matrix A, which result in interesting properties of the embedding map and the distances
preserved. Specifically, the distance d = dS (x−x′) of two signals affects l according to the characteristic function
φl (ξ|d). By selecting the appropriate distribution on A, the map can be designed to preserve a variety of distances.
We examine two particularly useful examples, preserving maps of `2 and `1 distances. The subsequent discussion,
as well as the discussion in Sec. 4.5, exploits and generalizes results in [12, 65].

4.2.1. Mapping `2 distances. If elements of A are chosen from an i.i.d. Normal distribution with varianceσ2 then l
is a normally distributed random variable with variance (d`2σ)2, where d`2 = ‖x−x′‖2. In other words, it is natural
to set the distance dS (·, ·) above as the `2 distance. In that case, the characteristic function is that of a normal
distribution φl (ξ|d) =φN (0,σ2d 2)(ξ) = e−

1
2 (σdξ)2

, and the distance map becomes

g (d) = 2
∑
k
|Hk |2(1−e−2(πσdk)2

), (4.9)

with d measuring the `2 distance.

4.2.2. Mapping `1 distances. If, instead, elements of A are drawn from an i.i.d. Cauchy distribution with zero
location parameter and scale parameter γ, i.e., density

fa(x) = 1

πγ

[
γ2

x2 +γ2

]
, (4.10)

with corresponding characteristic function φa(ξ) = e−γ|ξ|, then l is a sum of independent Cauchy-distributed ran-
dom variables. It is straightforward to show that the resulting characteristic function is a function of the `1 distance
of the two signals, d`1 = ‖x−x′‖1. In particular,

φl (ξ|d`1 ) = e−γd`1 |ξ|, (4.11)

and the corresponding distance map becomes

g (d) = 2
∑
k
|Hk |2(1−e−2πγdk ), (4.12)

with d in this case measuring the `1 distance. This enables direct embedding of an `1 space to an `2 space, in
contrast to solutions that first map `1 to a much larger `2 space through a “unary” expansion and then embed the
mapping, as done, for example, in [49, 66].

It is important to note that JL-type `1 embeddings have been shown not to be possible [20]. A key reason is that
concentration of measure results cannot be established for heavy-tailed distributions, such as the Cauchy distri-
bution we use here. However, our result can be established because of the bounded distortion function h(·), which
concentrates the distribution of the measurements. We should also note that the results above can be extended to
matrix elements drawn from anyα-stable distribution, thus implementing embeddings of `p distances other than
`1 and `2, in a manner similar to [58].

4.3. Properties of the distance map. Although it would be desirable to be able to generate any distance map
desired, the properties of distance computation impose constraints on the distance maps that are possible. In
particular, within the ε and δ error bounds of the embedding, the distance map should be subadditive.

Definition 4.2. A function g (x) is (ε,δ)-subadditive for all a,b in its domain: (1−ε)g (a +b)−δ≤ g (a)+ g (b)

For the case of the distance map g (d) in a (g ,δ,ε) embedding, the following proposition is proven in Appendix D:

Proposition 4.3. Any distance map g (·) satisfying Def. 2.1 for a convex set S , is (2ε,3δ)-subadditive.

The subadditivity of the distance map imposes constraints on the distance maps that are achievable with such
a scheme. For example, a distance map that is small for a range of distances cannot become large immediately
after; it is easy to show that for some positive a, if g (d) < a for d < d0, then g (d) < (2a +δ)/(1−ε) for d ≤ 2d0.

In addition to possessing the subadditivity property, distance maps g (d) designed in this section are comprised
of linear combinations of increasing functions of d bounded by 1. Thus, they are bounded by

g (d) ≤ lim
d→∞

g (d) = 2
∑
k

|Hk |2 = 2
∫ 1

0
|h(t )|2d t = 2Rh(0) (4.13)

13



Since the square root is also a monotonic function,
√

g (d), used in Cor. 4.1, is also increasing and bounded by√
2Rh(0). However, it remains an open question whether all distance maps satisfying (2.1) should satisfy some

monotonicity constraint.

4.4. Error Analysis. To understand the performance of an embedding in distance computation and to guide our
design we want to understand how well the embedding captures the distance. The main question is: given a
distance dW between two embedded signals in the embedding space W , how confident are we about the corre-
sponding distance between the original signals in the signal space S ? The function g (·) captures how distance is
mapped and can be inverted to approximately determine the distance dS in the signal space. On the other hand,
the constants δ and ε capture the ambiguity in the opposite direction, i.e., the ambiguity in the embedding space
given the distance in the signal space. Pictorially, taking Fig. 3(c) as an example, (2.1) characterizes the thickness
of the curves taking a vertical slice of the plots, while we are now interested in the thickness revealed by taking a
horizontal slice instead.

To capture the desired ambiguity, we can reformulate the embedding guarantees as

g−1
(

dW

(
f (x), f (y)

)−ε
(1+δ)

)
≤ dS (x,y) ≤ g−1

(
dW

(
f (x), f (y)

)+ε
(1−δ)

)
, (4.14)

which for small δ and ε can be approximated using the Taylor expansion of 1/(1±δ):

g−1 ((
dW

(
f (x), f (y)

)−ε) (1−δ)
)
. dS (x,y). g−1 ((

dW

(
f (x), f (y)

)+ε) (1+δ)
)

, (4.15)

Assuming that g (·) is differentiable, we can approximate the inequality using the Taylor expansion of g−1(·) around
dW

(
f (x), f (y)

)
and the fact that (g−1)′(x) = 1/g ′(g−1(x)). Ignoring the second order term involving ε ·δ, and defin-

ing the signal distance estimate d̃S = g−1
(
dW

(
f (x), f (y)

))
we obtain

d̃S − ε+δdW

(
f (x), f (y)

)
g ′ (d̃S

) . dS (x,y). d̃S + ε+δdW

(
f (x), f (y)

)
g ′ (d̃S

) . (4.16)

In other words, given the distance dS between two signals in the signal space and using d̃S to denote the estimate
of this distance, the ambiguity is less than∣∣dS (x,y)− d̃S

∣∣. ε+δdW

(
f (x), f (y)

)
g ′ (d̃S

) . (4.17)

Thus, ambiguity decreases by decreasing δ or ε, or by increasing the slope of the mapping.
This ambiguity locally characterizes the performance of the embedding for any particular pairs of points x, and

y, and their corresponding distance. The smaller the ambiguity is, the better the embedding for these two points.
Increasing the embedding dimension or the bitrate of the embedding, other things being equal, decreases δ and ε,
and, thus, improves the embedding quality.

Similarly, changing the distance map to locally increase its gradient, also locally improves the embedding, al-
though it might make the embedding guarantee deteriorate for different distances. Note that simply scaling the
embedding map, which similarly scales the distance map and its gradient, will not decrease the ambiguity; the
scaling will commensurately scale the distances on which this ambiguity applies. For example, an ambiguity of ε
at distance d is equivalent to ambiguity ε/2 at distance d/2.

4.5. Embeddings of Kernel Inner Products. Randomized projections, as first demonstrated in [65], can be used
to approximate kernel inner products for some shift-invariant kernels. In addition to preserving distances, the
embeddings we describe also provide a more general kernel approximation approach, generalizing the results
in [65].

The inner product of the measurements 〈y,y′〉 can be derived from the `2
2 difference of the measurements,

‖y−y′‖2
2. Specifically,

‖y−y′‖2
2 = ‖y‖2

2 +‖y′‖2
2 −2〈y,y′〉 =⇒ 〈y,y′〉 = ‖y‖2

2 +‖y′‖2
2 −‖y−y′‖2

2

2
. (4.18)

Thus, if dW (y,y′) = ‖y− y′‖2
2 in Def. 2.1, and substituting (4.5) and (4.8) in (4.18), we can show that the embed-

ding can be designed to approximate a kernel with accuracy 3ε/2 and with probability of failure bounded by

1−2e2logQ−2M ε2

h̄ , as noted in Sec. 4.1. Using a simple substitution ε′ = 3ε/2, the following theorem follows.
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Theorem 4.4. Consider a set S of Q points in RN , measured using y = h(Ax+w), with A, w, and h(t ) as above. With

probability greater than 1−2e2logQ− 8
9 M ε2

h̄4 the following holds

K (d)−ε≤ 1

M
〈y,y′〉 ≤ K (d)+ε (4.19)

for all pairs x,x′ ∈S and their corresponding measurements y,y′, where

K (d) =∑
k
|Hk |2φl (k|d). (4.20)

defines the kernel of the embedding.

5. EMBEDDING EXAMPLES

5.1. Quantized J-L Embeddings. As a first example, we analyze quantized J-L embeddings. In classical J-L em-
beddings, the distance map is the identity, i.e., g (d) = d , and ε = 0. Starting with classical J-L embeddings, using
the development in Sec. 3.4, we can derive the quantized J-L embedding guarantees described in [48]. In this case,
the scaling of the embedding allows the removal of the

p
M term from (3.2):

(1−δ)‖x−y‖2 −2−
R
M +1S ≤ ‖Q( f (x))−Q( f (y))‖2 ≤ (1+δ)‖x−y‖2 +2−

R
M +1S. (5.1)

Since g (d) = d , which has constant slope equal to 1, the denominator in (4.17) is constant. To reduce the am-
biguity, a system designer should reduce the numerator as much as possible. To do so, as discussed in [48], the
designer confronts the trade-off between the size of δ and ε. The former is controlled by the dimensionality of the
projection, M , while the latter by the bit-rate per dimension, B . The greater M is, the smaller δ is. Similarly, the
greater B is, the smaller ε is.

As we mention above, the total bit-rate of the embedding is equal to R = MB . In order to best use a given rate,
the system designer should explore the trade-off between fewer projection dimensions at more bits per dimension
and more projection dimensions at fewer bits per dimension. This trade-off is explored in detail in [48], where
it is shown that, in the image retrieval application considered, the best performance is achieved using B = 3 or 4
bits per dimension and M = R/3 or R/4 dimensions, respectively. The performance of the two choices is virtually
indistinguishable and significantly better than previous 1-bit approaches [51, 75], which use B = 1, R = M .

5.2. Binary Universal Embeddings. Universal Embeddings provide a more comprehensive example of the devel-
opment and analysis above. These embeddings are computed using (2.4) with the periodic quantizer shown in
Fig. 3(a). With appropriate scaling on the period of the quantizer, these embeddings satisfy exactly the conditions
of Thm. 4.1.

5.2.1. Embedding Map. The special case of binary universal embeddings has been extensively studied in [12, 16–
18], providing distance embedding results and kernel approximation guarantees. These results, using the develop-
ment in Sec. 4, become a special case of Thms. 4.1 and 4.4. Specifically, the quantizer Q(x) in Fig. 3(a) has period 1,
i.e., Q̃(x) =Q(2x) has the correct period. The scaling can be incorporated in the generation of A, i.e., (2.4) becomes

Q

(
2

(
1

2
∆−1Ax+ 1

2
∆−1w

))
= Q̃

(
Ãx+ w̃

)
, (5.2)

where Ã is drawn i.i.d. Gaussian with variance (σ/2∆)2 and w̃ drawn i.i.d. uniform in [0,1). The distance mapping
in (2.6) follows from (4.9) and the Fourier series of the periodic square wave Hk = sin(πk/2)

πk , exploiting the fact
that |sin(πk/2)|2 is 0 for k even, and 1 for k odd. Note, that we are using the Fourier series of a shifted quantizer
compared to the one in Fig. 3(a)., i.e., Q ′(x) = Q(x + 1/2), because it is symmetric and has a real Fourier series.
However, the shift is inconsequential in the result because of the dither w.

Using the reformulation above, the distance embedding in [17, Thm. 3.2] and the kernel approximation in [16,
Prop. 3.1] follow trivially from Thms. 4.1 and 4.4, respectively. We should also note that the kernel guarantee is
slightly tighter in [16, Prop. 3.1], exploiting the fact that a binary embedding with y taking values in {−1,1} has
deterministic norm ‖y‖2

2 = M and not random as is the general case for Thm. 4.4.
Moreover, in addition to verifying existing results, the development above provides several generalizations.

For example, embeddings using a matrix with elements drawn from an i.i.d. Cauchy distribution, as described
in Sec. 4.2, map the `1 distance onto the hamming space. Again, starting with (5.2) and A drawn from a Cauchy
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distribution with scale parameter γ, Ã is Cauchy distributed with scale parameter γ/2∆. Thus, the embedding map
becomes

g (d) = 1

2
−

+∞∑
i=0

e−
(2i+1)πγd

∆

(π(i +1/2))2 , (5.3)

where d is the `1 distance.
Of course, other mappings are possible by appropriately constructing the projection matrix A, but we omit them

here for brevity.

5.2.2. Extension to Infinite Sets. More importantly, using the development in Sec. 3.3 and Thm. 3.2, it is possible
to guarantee binary universal embeddings on infinite sets, extending the results on finite point clouds established
to-date. In the context of Thm. 3.2, the embedding is satisfied with c = 1, δ = 0 and w(ε) = 2ε2. However, the
embedding map Q(Ax+w) is discontinuous and, therefore, we need to examine its T -part Lipschitz continuity
property.

In particular, since the scalar binary quantizer Q(·) only takes values in {0,1}, the embedding function is, at most,
exactly 2-part Lipschitz continuous with constant K f equal to 0. In the context of Thm. 3.2, we can bound P2 ≤ 1,
i.e., c1 ≤ (1+ c0) log2, and set PF = 0. Thus the probability that the embedding does not hold is upper bounded by

ce2ES
r /2+c1M−M w(δ,ε) +Tmaxe−2c2

0 M +PF = e2ES
r /2+M(1+c0) log2−2Mε2 +2e−2c2

0 M (5.4)

which decreases exponentially in M as long as (1+ c0) log2 < 2ε2, which only holds if ε>√
0.5log2 ≈ 0.6. In other

words, this simple bounding approach can only guarantee an embedding with a large error ε.
A tighter bound can be found if we better understand and bound P2. This is the probability that a ball of radius

r /2 will cross a quantization boundary when projected through a random projection. If the projected ball diameter
is∆ or greater, then a quantization boundary will be crossed with probability 1. On the other hand, if the projected
ball diameter is l ≤ ∆, then a boundary crossing only happens with probability l /∆. Thus, a bound on P2 can
be developed which enables the embedding error ε to go to zero. In the interest of brevity in the core of our
development, we relegate the details on developing the bound to App. E.

5.2.3. Error Analysis. In contrast to quantized J-L embeddings, binary universal embeddings use 1 bit per em-
bedding dimension. Thus, the rate R also determines the dimensionality of the projection, K = R, as well as the
constant ε in the embedding guarantees (2.5). Furthermore, there is no multiplicative term in the guarantees, i.e.,
δ = 0. Thus, in the ambiguity analysis (4.17), the numerator is fully determined; the system designer can only
control the denominator.

This does not mean that there are no design choices and trade-offs: the trade-off in these embeddings is in the
choice of the parameter∆ in (2.4). As discussed in the Sec. 2.2 and shown in Fig. 3(b), g (·) exhibits an approximately
linear region, followed by a rapid flattening and an approximately flat region. The choice of ∆ controls the slope of
the linear region and, therefore, how soon the function reaches the flat region.

As mentioned earlier, the linear bound in (2.9) is a very good approximation of the upwards sloping linear region
of g (·), which has slope g ′(d) ≈ p

2/π/∆. By decreasing ∆, we can make that slope arbitrarily high, with a corre-
sponding decrease of the ambiguity ε/g ′(d̃S ). However, this linear region does not extend for all d , but only until
it reaches the point d = D0 where g (D0) ≈ 1/2 and the flat region of g (d) begins. As ∆ becomes smaller and the
slope of the linear region increases, it reaches the flat region much faster, approximately when D0

p
2/π/∆ = 1/2,

i.e., when D0 ≈∆
p
π/8 ≈ 0.6∆.

Unfortunately, beyond that linear region, the slope g ′(d) becomes 0 exponentially fast. This implies that the
ambiguity in (4.17) approaches infinity. Thus, if the embedding distance dW is within 0.5±ε, then it is impossible
to know anything about dS by inverting the mapping, other than dS &D0. This makes the trade-off in designing
∆ clear. A smaller ∆ reduces the ambiguity in the range of distances it preserves, but also reduces the range of
distances it preserves. The system designer should design ∆ such that the distances required in the application of
the embedding are sufficiently preserved.

As an example, consider the motivating application in Sec. 1.1: retrieval of nearest-neighbors from a database.
When a query is executed, its embedding distance is computed with respect to all the entries in the database,
embedded using the same parameters. For the query to be successful, there should be at least a few entries in the
database with small embedding distance from the query. These entries are selected and returned. For the query to
produce meaningful results, the embedding distance of those entries should represent quite accurately the signal
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distance between the query signal and the signals from the entries in the database. Furthermore, if the signals
are all very distant from the query, the embedding distance should accurately reflect that fact, so that no signal is
selected; in this case the embedding does not need to represent how distant each entry is.

In other words, the embedding only needs to represent distances up to a radius D , determined by the system
designer, and to only identify distances further than D , without necessarily representing those distances. Thus,
∆ should be designed to be as small as possible so the ambiguity in representing distances in the linear region is
small, but not smaller than necessary to ensure that all distances of interest are contained in the linear region of
the embedding and do not spill over into the flat region with high ambiguity.

Note that this notion of locality is much richer that the notion defined in [59]. The latter only ensures that
the distances between embeddings of close signals is small and between embeddings of distant signals is large.
Instead, our development, further guarantees a linear distant map up to a radius, thus preserving distances up to
this radius.

5.3. Multibit Universal Embeddings. Another benefit of the development and analysis in this paper is that it fa-
cilitates analysis of multibit universal embeddings, i.e., embeddings using the quantizer at the bottom of Fig. 3(a).

In principle, it is possible to consider multi-bit universal quantizers as sums of scaled one-bit quantizers, both
in amplitude and the argument. In particular, given the 1-bit quantizer Q(·) defined at the top of Fig. 3(a), the B-bit
generalization equals

QB (x) =
B−1∑
b=0

2bQ

(
x

2b

)
, (5.5)

and has period 2B . Thus, with quantization interval ∆, the embedding can be expressed as

y = Q̃B
(
Ãx+ w̃

)
, (5.6)

where Q̃B (x) =QB (2B x), Ã has elements drawn from an i.i.d. Normal distribution with variance (σ/2B∆)2, to map
`2 distances, or an i.i.d. Cauchy distribution with scale parameter γ/2B∆ to map `1 distances, as described above.
Using the Fourier series of Q(·), appropriately scaled and summed for each bit b = 0, . . . ,B−1, and a similar develop-
ment as in Sec. 5.2.1 it is possible to derive the embedding map. It is important to note, however, that appropriate
shifting and scaling of the functions significantly complicates the resulting expressions.

Instead, a simpler expression can be derived by observing that the multibit universal quantization function is,
in fact, the result of uniform scalar quantization applied to the sawtooth map f (x) = x −1/2 for x ∈ [0,1), f (x) =
f (x −1) otherwise. Thus, we can use the well-established Fourier series coefficients of the sawtooth function to
obtain |Hk |2 = (1/2πk)2 for k > 0. The resulting map for a general A without scaling and quantization equals to

g (d) = 2
∑
k>0

1

(2πk)2 (1−φl (2πk|d)) = 1

12
− ∑

k>0

1

2π2k2φl (2πk|d). (5.7)

Thus, if the scaling by ∆ and 2B is considered and the elements of A are drawn from an i.i.d. N (0,σ2) distribution,
the embedding map becomes

g (d) = 1

12
− ∑

k>0

1

2π2k2 e
−2

(
πσdk
2B∆

)2

, (5.8)

where d is the `2 distance of the signals. Similarly, if elements of A are drawn from an i.i.d. Cauchy distribution
with scale parameter γ, then the embedding map becomes

g (d) = 1

12
− ∑

k>0

1

2π2k2 e
− 2πγdk

2B∆ , (5.9)

where d is now the `1 distance of the signals.
The sawtooth, which takes values in [−1/2,1/2] is subsequently quantized by a B-bit uniform scalar quantizer,

i.e., one having 2B levels and interval∆= 2−B . In the context of Thm. 3.3, this implies a worst-case quantization er-
ror of EQ =∆/2 = 2−B−1. This error is in the `2 distance of the embedding, not in the `2

2 guarantee of Thm. 4.1. The
guarantee applies, therefore, to the embedding map in Cor. 4.1. The corresponding guarantee for the `2

2 distance
should use EQ = (∆/2)2 = 2−2B−2.

Using a sawtooth function as a map, followed by scalar quantization to derive multibit universal embedding
guarantees should provide looser bounds than explicitly estimating the guarantee using sum of square wave maps.
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FIGURE 4. Simulation results in embedding design: (a) Unquantized embedding preserving two
different distance intervals with different accuracy. (b) Effect of 1-bit quantization on (a). (c) A
3-level quantized embedding with similar performance as (a).

However, as the rate B increases, the two guarantees should converge to the same one. In fact, as B increases and
quantization becomes finer, both approaches converge to the guarantees derived using an unquantized sawtooth
function as an embedding map.

6. SIMULATIONS AND APPLICATION EXAMPLES

To verify and demonstrate the theoretical developments above, we present simulation results verifying our de-
signs. We also demonstrate how our approach can be applied toward encoding features for image retrieval and for
image classification over the network.

6.1. Simulations: Embedding Design. Existing simulation results on quantized embeddings, such as the ones
shown in Fig. 3, demonstrate the validity of our analysis. To further verify the results in Sec. 4.1 we consider a
slightly more complex distance map, in which shorter distances should be represented with greater precision, in-
termediate distances should be represented with less precision and larger distances do not need to be represented
with any precision, similar to universal embeddings.

Specifically, we first consider an embedding with H1 = H10 = p
2/2 and Hk = 0 for all other k. In other words,

the embedding map h(t ) is equal to

h(t ) =
p

2

2
(sin(2πt )+ sin(20πt )), (6.1)

as plotted at the top of Fig. 4(a).
The bottom of Figure 4(a) demonstrates the performance of the embedding on randomly generated signals in

N = 10000 dimensions with different distances in the range d = 0, . . . ,2. The signals are embedded in M = 2000
dimensions using matrices with variance σ = 0.2 and 0.4 for the blue and red dots, respectively. The `2

2 distance
of the embedded signals is plotted against the `2 distance of the signals. The black line in the figure plots the
theoretical embedding map g (d) according to Thm. 4.1. As evident in the figure, the embedding performs as
predicted by the theory. The embedding map increases rapidly for a small radius, not as rapidly until a larger
radius, and then becomes flat beyond that. The radii are greater for smaller σ, as expected.

The figure also shows the ambiguity, as measured by the horizontal width of the plots and analyzed in Sec. 4.4.
As expected, the ambiguity is lower given the vertical ambiguity if the slope of the embedding map is higher. Thus,
short distances, up to a first radius, are better represented than longer distances, up to the point where the embed-
ding flattens. Beyond that, the embedding only conveys information that signals are far apart.
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We should also note, that it seems that the vertical ambiguity of the embedding seems to be smaller for smaller
embedding distances, suggesting a multiplicative ambiguity instead of an additive one.

Figure 4(b) demonstrates a 1-bit quantized version of the embedding in (a), simply taking the sign of the con-
tinuous embedding:

h(t ) =
p

2

2
sign(sin(2πt )+ sin(20πt )), (6.2)

with the scaling chosen such that g (d) saturates to 1 asymptotically. The embedding map is shown on the top of the
figure, while the embedding performance is shown at the bottom. The black line plots the theoretical embedding
map for the unquantized embedding, i.e., the same map as in (a).

As evident by the figure, the actual performance of the embedding concentrates around a curve that is differ-
ent than the theoretical prediction for the continuous version. However, the embedding is within the bounds of
Thm. 3.3 because EQ is quite large for a 1-bit quantizer. Moreover, the experimental results demonstrate quite
good concentration around a curve, even though the embedding uses only one bit per coefficient. Still, a better
understanding of the quantized embedding map and its Fourier series would yield a more accurate prediction.
Such an understanding is not straightforward and we do not attempt it here.

Instead, in Figure 4(c) we demonstrate a similar quantized embedding that is easier to characterize. Specifically,
the embedding map h(t ) is equal to

h(t ) = 1

2
sign(sin(2πt ))+ 1

2
sign(sin(20πt )), (6.3)

where

sign(x) =
{ −1, if x < 0

+1, otherwise,
(6.4)

as plotted at the top of the figure. In this case,

|Hk | =


2/πk, if k is odd
20/πk, if k is divisible by 10

0, otherwise.
(6.5)

This embedding, as shown in the figure, has very similar characteristics and distance-preservation properties with
the continuous embeddings of Fig. 4(a). The quantized embedding has slightly wider error bounds in the exper-
iments, but this is expected given that it is quantized at only 3 levels per coefficient. Still, despite the effect of
quantization, the performance is very close to the performance of the continuous embedding. In contrast to the
quantized embedding in Fig. 4(b), the embedding in (c) can be easily analyzed. As expected, it is also a bit tighter
than the one in (b) because it is a 3-level per coefficient embedding, i.e., uses approximately 1.6 times the rate.

To further demonstrate the effect of quantization, Fig. 5(a) plots simulation results on the embedding map (6.1)
when quantized with a 1-, 2-, and 4-bit scalar quantizer, i.e., for embedding maps of the form

h(t ) =QB (sin(2πt )+ sin(20πt )), (6.6)

where QB (·) is a B-bit scalar quantizer, appropriately scaled. As above, the black line plots the distance map pre-
dicted assuming an unquantized embedding, i.e., the embedding in Fig. 4(a). Of course, the case B = 1 coincides
with the example in Fig. 4(b).

As evident in Fig. 5(a), the higher the rate, the closer the result is to the theoretical prediction for the continuous
embedding. Of course, the embedding satisfies the bounds of Thm. 3.3. However, the figure suggests that the
bounds are loose. An analysis along the lines of Thm. 4.1, should provide a tighter bound. Such an analysis is not
as straightforward for this particular embedding, and we do not attempt it here.

For completeness, Fig. 5(b) plots the performance of quantized universal embeddings for the same choice of
bitrates. The figure also plots the theoretical distance maps (2.5) for B = 1 and (5.7) for the unquantized sawtooth
wave using black lines. Even with B = 4, the quantization is sufficiently fine, so that the experimental distance
map of the quantized embedding and the theoretical distance map of unquantized embedding are observed to
coincide.
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ingly refined quantization. (b) Multibit universal embeddings with increasingly refined quanti-
zation, approaching the performance of a continuous embedding using a sawtooth embedding
map.

6.2. Application Example: Image Retrieval Using Universal Embeddings. As an example application we con-
sider image retrieval over the cloud. A user wants to retrieve information about a query object by capturing its
photograph and transmitting information extracted from the photograph to a database server. The server locates
the object in the database that most closely matches the query image, according to a predetermined similarity
criterion, and transmits meta-data about that object back to the user. The goal is to reduce, as much as possible,
transmission bit-rate given a certain desired performance.

Since the server does not require to exactly reconstruct the image to retrieve similar images, it should be possible
to significantly reduce the bit-rate compared to naively transmitting the actual images using lossy compression.
As we describe below, this is indeed possible by computing quantized universal embeddings of features extracted
from the query and database images.

6.2.1. Protocol Architecture. In preparation for the query, server and client agree on the embedding parameters—
specifically, A, w, and ∆ in the case of universal embeddings—according to the embedding specifications. For
example, the server might draw universal parameters for all clients that will access the database.

Next, the server builds a database using features extracted from previously labeled images. In our experiments
we use the well-established SIFT features [50], which provide significant invariance properties that facilitate im-
age retrieval. Typically, with such feature extraction methods, a single image might generate a variable number of
features. However, each of the generated feature vectors is associated to an image in the database and its associ-
ated metadata. The server builds and indexes the database by embedding the features using the predetermined
embedding parameters and associating the image and the metadata with the correct embedded feature.

To execute a query, the client first acquires an image that serves as the query image. The client extracts the
features from that image, embeds them using the predetermined embedding parameters, and transmits their em-
bedding to the server. The server receives the embedded features, and retrieves from the database the nearest
neighbor to each feature using the embedding distance, i.e., a single match for every embedded features. From
those matches, the server selects the J closest candidates, with J = 20 in our experiments. The metadata are se-
lected using majority voting among those matches.

6.2.2. Experimental Results. To validate our approach, we conducted retrieval experiments using the ZuBuD data-
base [68]. This public database contains 1005 images of 201 buildings in the city of Zurich. There are 5 images
of each building taken from different viewpoints, all of size 640×480 pixels and compressed in PNG format. Our
experimental setup is identical to [48]: One out of the 5 viewpoints of each building was randomly selected as
a query image, forming a test set of s = 201 images. The server’s database comprises of the remaining 4 images
of each building, for a total of t = 804 images. The query aims to identify which of the 201 possible buildings is
depicted in each query image.

Our goal is to examine the performance of embeddings in preserving distances, not the performance of various
feature selection methods or retrieval protocols. Thus, we extracted the widely adopted SIFT features [50] from
each image and embedded them using quantized J-L embeddings or universal embeddings. Using the protocols
described in Sec. 6.2.1 we measured how many of the 201 query images produced the correct result, i.e., correctly
identified the building depicted. We conducted our experiments in bitrates ranging from 0 to 80 bits per descriptor.
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FIGURE 6. Performance of universal embeddings (UE) in metadata retrieval. (a) Probability of
correct retrieval as a function of the bitrate for a variety of ∆ values. (b) Probability of correct
retrieval as a function of∆ for a variety of bitrates. (c) Comparison of universal embeddings using
∆= 1.25

p
2/π and 1.5

p
2.πwith quantized J-L methods (QJL). Universal embeddings significantly

outperform the alternatives.

Our results are averaged over 100 experiments with different realizations of A and w, although the variability among
individual runs was very small.

The first experiment tested the effect of ∆ in the design of the embedding. In particular, we examined the range
∆ = 0.5

p
2/π,0.75

p
2/π, . . . ,3

p
2/π. The results are shown in Figs. 6(a) and (b). In Fig. 6(a) each curve plots the

probability of correct metadata retrieval as a function of the bitrate used per descriptor, given a fixed∆. The higher
the probability of success, the better. Figure 6(b) presents another view on the same data: each curve plots the
probability of correct retrieval given a fixed bitrate per descriptor as ∆ varies.

The plots in Fig. 6(a) and (b) verify our expectations. As the bitrate increases, the performance improves. With
respect to ∆, the behavior is more nuanced. For small ∆, the slope of g (d) is high and the ambiguity in the linear
region of g (d) is low, as discussed in Sec. 5.2 and shown in Fig. 3. Thus, the distances represented by the embedding
are represented very well. However, D0 is small, i.e. it can only represent accurately a very small range of distances.
Thus, for a large number of queries for which the closest matches are farther than D0 the results returned are
not meaningful. This type of error dominates the results when ∆ is low. As ∆ increases, more and more queries
produce meaningful results and the error performance improves, even though the accuracy of the linear region
of the embedding decreases. For larger ∆ the reduced accuracy of the embedding starts dominating the error
and the performance decreases again. The best performance is obtained for ∆= 1.25

p
2/π, which corresponds to

corresponding D0 = .625.
We also compared the performance of our approach using quantized J-L embeddings. Figure 6(c) compares the

performance of the two types of embeddings. The figure plots the probability of correct retrieval as a function of
the bitrate per descriptor for each of the methods examined. As expected [48], multibit quantized J-L embeddings
outperform 1-bit quantized J-L embeddings—known as “compact projections” (CP) [51, 75] and motivated by LSH
approaches [4] in earlier literature. More important, universal embeddings—plotted in black circles and black
diamonds, for ∆ = 1.25

p
2/π and 1.5

p
2/π respectively—significantly outperform quantized J-L embeddings. For

example, to achieve a probability of correct retrieval of 80%, universal embeddings require approximately 8 fewer
bits per descriptor, a 20% rate reduction. For 90% probability of correct retrieval, universal embeddings require 15
fewer bits per descriptor, a 25% rate reduction. Similarly, using only 40 bits per descriptor, universal embeddings
achieve almost 90% success rate, versus almost 80% for the best alternative. The results are robust with respect to
∆: for ∆ ∈ [

p
2/π,2

p
2/π], universal embeddings outperform all quantized J-L embeddings.

21



0 5 10 15 20 25 30 35 40
55

60

65

70

75

80

85

90

95

Bits per descriptor

M
at

ch
in

g 
ac

cu
ra

cy

 

 

1−bit quantized JL
2−bit quantized JL
3−bit quantized JL
4−bit quantized JL
5−bit quantized JL
1−bit, no embedding

0 5 10 15 20 25 30 35 40
55

60

65

70

75

80

85

90

95

Bits per descriptor

M
at

ch
in

g 
ac

cu
ra

cy

 

 

Universal Embedding, 6 = 2.1277
Universal Embedding, 6 = 1.1821
Universal Embedding, 6 = 1.4507
1−bit, no embedding
1−bit, quantized JL

1 1.2 1.4 1.6 1.8 2 2.2 2.4
76

78

80

82

84

86

88

6

M
at

ch
in

g 
ac

cu
ra

cy

 

 

9 bits/descriptor
13 bits/descriptor
17 bits/descriptor
21 bits/descriptor
25 bits/descriptor
29 bits/descriptor
33 bits/descriptor

(a) (b) (c)

FIGURE 7. Classification accuracy as a function of the bit-rate achieved using (a) quantized JL
(QJL) embeddings; and (b) universal embeddings. (c) Classification accuracy as a function of the
quantization step size ∆ used in computing the universal embeddings.

6.3. Application Example: Kernel-based Image classification. We also tested the performance of universal em-
beddings as a feature representation on a multiclass classification problem. The goal is to identify the class mem-
bership of query images belonging to one of 8 different classes. Our experiments demonstrate how the embed-
dings function as an SVM kernel, and enable a rate-inference trade-off analogous to the rate-distortion trade-off
in conventional coding: they allow trading inference performance for reduction in the rate.

6.3.1. Protocol Architecture. The protocol for this application is very similar to the one in Sec. 6.2.1. Specifically, to
set up this problem, the server extracts a Dalal-Triggs Histogram of Oriented Gradients (HOG) features [54] from
the training images. The HOG algorithm extracts a 36 element feature vector (descriptor) for every 8×8 pixel block
in an image. The descriptors encode local 1-D histograms of gradient directions in small spatial regions in an im-
age. Every HOG feature is compressed using either quantized JL embeddings or universal quantized embeddings.
The compressed features are then stacked to produce a single compressed feature vector for each image. The com-
pressed features of the training images are used together with the image labels to train a number of binary linear
SVM classifiers, one for each class.

To classify a query image, the client extracts HOG features, encodes them using the predetermined embedding
parameters, and transmits it to the server. The server executes the SVMs directly on the embeddings and decides
on the embedding class.

6.3.2. Experimental Results. In our simulations, we used tools from the VLFeat library [71] to extract HOG features
and train the SVM classifier. We consider eight image classes. One class consists of persons from the INRIA person
dataset [54, 55]. The other seven classes—car, wheelchair, stop sign, ball, tree, motorcycle, and face— are extracted
from the Caltech 101 dataset [33, 34]. All images are standardized to 128×128 pixels centered around the target
object in each class. We use 15 training and 15 test images from each class.

Fig. 7(a) shows the classification accuracy obtained by quantized JL embeddings of HOG descriptors using the
trained SVM classifier. The black square corresponds to 1-bit scalar quantization of raw non-embedded HOG
descriptors, using a bit-rate of 36 bits—one bit for each element of the descriptor.

The figure shows that 1-bit quantized JL embeddings allow us to achieve a 50% bit-rate reduction, compared
to non-embedded quantized descriptors, without reduction in performance (classification accuracy). This is ob-
tained using an 18-dimensional JL embedding of every HOG descriptor, followed by 1-bit scalar quantization.
Furthermore, increasing the embedding dimension, and, therefore, the bit-rate, above 18 improves the inference
performance beyond that of the 1-bit quantized non-embedded HOG features. Note that, among all quantized JL
embeddings, 1-bit quantization achieves the best rate-inference performance.

Fig. 7(b) compares the classification accuracy of universal embeddings for varying values of the step size param-
eter ∆ with that of the 1-bit quantized JL embeddings and the 1-bit quantized non-embedded HOG descriptors.
With the choice of∆= 1.4507, the universal embedded descriptors further improve the rate-inference performance
over the quantized JL embeddings by 1% in inference improvement. They also achieve the same classification
accuracy as any choice of quantization for non-embedded HOG descriptors, or, even, unquantized ones, at signif-
icantly lower bit-rate—points not shown in the figure, as they are out of the interesting part of the bit-rate scale.
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Figure 7(c) illustrates the effect of the parameter ∆ by plotting the classification accuracy as a function of ∆ for
different embedding rates. The figure shows that, similar to the findings in Sec. 6.2, if ∆ is too small or too large,
the performance suffers.

As evident, an embedding-based system design can be tuned to operate at any point on the rate vs. classification
performance frontier, not possible just by quantizing the raw HOG features. Furthermore, with the appropriate
choice of ∆, universal embeddings improve the classification accuracy given the fixed bit-rate, compared with
quantized JL embeddings, or reduce the bit-rate required to deliver a certain inference performance.

7. DISCUSSION AND CONCLUSIONS

A key contribution of our paper is the notion that embeddings can be designed to have different distance preser-
vation accuracy for different distance ranges. In doing so, we developed a framework to understand how the prop-
erties of the embeddings are preserved, exploiting the embedding distance map. However, our work raises more
interesting questions than it solves.

A key question in our approach is whether any arbitrary distance preservation design is possible. Our results
on the subadditivity of the distance map in Sec. 4.3 place some constraints on what distance maps can be real-
ized. However, it is not clear that this is the only constraint that is realizable. For example, we conjecture that the
distance map should be monotonic—within ε and δ ambiguities, similar to the subadditivity constraint—but we
have not provided such a proof.

It is also not clear that our design method in Sec. 4.1 can achieve any arbitrary design within those constraints.
For example, our design is monotonic. If our monotonicity conjecture is false, then our design approach cannot
achieve all the possible distance maps. Ideally, we prefer to be able to determine the embedding starting from the
distance map instead of the other way around that Thm. 4.1 establishes. In the context of our design approach, we
would like to determine h(t ) and the corresponding Hk starting from g (d). Of course this could be possible only
through a very different design approach.

While our development has demonstrated achievable bounds on the embedding design, fundamental lower
bounds would also be desirable. For example, [2] demonstrates a lower bound on the number of measurements
required to satisfy the J-L lemma, which is improved in [45] for linear embeddings. Similarly, [76] has demonstrated
some lower bounds on the rate of binary embeddings. However, neither of these results account for a distance map
and for preserving different ranges with different accuracy.

Of course, part of our goal is to design representations that accurately represent signal geometry between pairs
of signals, i.e., distances and inner products, without requiring both signals to be present while the representation
is computed. These representations should be easy to compute and easy to compute with, i.e., should provide
straightforward mechanisms to compute the necessary geometric quantities. While we are using embeddings as
our mechanism, it is not necessarily the only or the optimal approach to the problem.

As a parallel path, consider basis and frame expansions of signals, which provide straightforward mechanisms
to represent signals. Using those representations in classical signal processing applications, we can control, for
example, the approximation error in the representation, the rate-distortion performance of the quantized repre-
sentation, and the representation accuracy in certain subspaces, according to the application requirements. We
desire to have the same control on the signal geometry and not on the signals themselves. In that sense, the dis-
tortion reflects the accuracy of representing distances and different ranges of distances. Thus, for example, we
would like to control the rate-distortion performance of a quantized distance representation, given the range of
distances we are interested in. General representation and coding methods, as well as representation complexity
and rate-distorion bounds are still open for this problem.

Fast computation is also desirable in our methods. While dimensionality reduction does reduce computation
in practice, it does not improve the asymptotic behavior of methods such as nearest neighbors. However, there
are obvious connections between our work and LSH [4, 26, 38], which are definitely worth exploring. LSH could
be trivially used as a layer on top of the embedding, as a separate process to speed up computation. A more in-
teresting approach would be a combination of the two, since many of the fundamental concepts and the resulting
algorithmic steps are similar. In some sense, the ideal LSH is also a distance embedding into a discrete space, in
which with very high probability g (d) = 0 if d < r and g (d) 6= 0 if d > R for some r < R.

More generally, we are interested in information representation and coding when the end goal is a function
computation g (x,y) and when one of the inputs is not available at the encoder. The information and the cor-
responding distortion is measured at the function output. The embeddings considered in this work represent a

23



special case given by g (x,y) = g (‖x− y‖). Of interest are more general functions common in machine learning,
such as classifiers and estimators. Some fundamental bounds and coding schemes have been developed using
the chromatic entropy of the function, e.g., see [30, 56]. However, these techniques operate on variables x and y
drawn from a discrete alphabet. Even with discrete sources, they require the construction of a large graph that
grows with the size of the alphabet. Such an approach is prohibitive even in simple problems, such as the distance
representation discussed in this paper.

Distributed functional coding [52], is a more practical and promising alternative for continuous sources. Un-
fortunately, distance functions do not satisfy the conditions for optimality in the proposed solution—specifically,
an “equivalence-free” property. This will most definitely also be the case for a number of machine learning algo-
rithms. Furthermore, for such algorithms an explicit differentiable functional form, as required for the encoding,
might not be easily available. For such functions, an embedding-based coding might be more appropriate. Still,
it remains to be seen whether embeddings that preserve function computation, other than geometry, are even
possible.
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APPENDIX A. PROOF OF THEOREM 3.1

Proof. First, we consider two balls of radius r with centers x and y, denoted Br (x) and Br (y), respectively. For any
vector pair x′ ∈Br (x), y′ ∈Br (y) we have

|d(x′,y′)−d(x,y)| ≤ 2r (A.1)

⇒|d( f (x′), f (y′))−d( f (x), f (y))| ≤ 2K f r (A.2)

and |g (d(x′,y′))− g (d(x,y))| ≤ 2Kg r (A.3)

This follows by the triangle inequality and the properties of Lipschitz continuity.
Starting with (A.2) and using (2.1) and (A.3) we can derive

d( f (x′), f (y′)) ≤d( f (x), f (y))+2K f r (A.4)

≤(1+δ)g (d(x,y))+2K f r +ε (A.5)

≤(1+δ)g (d(x′,y′))

+ (1+δ)2Kg r +2K f r +ε (A.6)

and

d( f (x′), f (y′)) ≥d( f (x), f (y))−2K f r (A.7)

≥(1−δ)g (d(x,y))−2K f r −ε (A.8)

≥(1−δ)g (d(x′,y′))

− (1−δ)2Kg r −2K f r −ε (A.9)

≥(1−δ)g (d(x′,y′))

− (1+δ)2Kg r −2K f r −ε (A.10)

i.e.,

(1−δ)g (d(x′,y′))− (1+δ)2Kg r −2K f r −ε
≤ d( f (x′), f (y′)) ≤

(1+δ)g (d(x′,y′))+ (1+δ)2Kg r +2K f r +ε (A.11)

Setting r = α
(1+δ)2Kg +2K f

and ε̃= ε+α for some α, we obtain that the final embedding bound

(1−δ)g (d(x′,y′))− ε̃≤ d( f (x′), f (y′)) ≤ (1+δ)g (d(x′,y′))+ ε̃ (A.12)

holds with probability 1− ce−M w(δ,ε̃−α).
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Using the union bound on the CS
ε balls that cover the signal set with Kolmogorov entropy ES

r , it follows that (A.12)

holds with probability greater than 1−ce2ES
r −M w(δ,ε̃−α), which decays exponentially with M , as long as M =O(ES

r ).
�

APPENDIX B. PROOF OF THEOREM 3.2

Proof. For a single value of T , given M measurements, we can use Hoeffding’s inequality to upper bound the
probability that more than PT (1+ c0)M measurements will be exactly T -part Lipschitz over a single ball Br /2(x):

P (more than PT (1+ c0)M measurements are exactly T -part Lipschitz) ≤ e−2c2
0 M . (B.1)

For each T , each of those measurements will partition the ball to T sets. We set a Tmax, denoting the level beyond
which the probability that a function fm(·) is T -part Lipschitz is negligible. Thus, using the union bound, a lower
bound on the probability that for all T , at most PT (1+c0)M measurements are exactly T -part Lipschitz continuous

is equal to 1−Tmaxe−2c2
0 M −PF , where PF = (

∑∞
T=Tmax+1 PT ) is considered negligible.

Therefore, the embedding partitions the ball into at most

# of Sets ≤
Tmax∏
T=1

T PT (1+c0)M = e
∑Tmax

T=1 PT (1+c0)M logT = ec1M (B.2)

sets, with probability greater than 1−Tmaxe−2c2
0 M −PF , where c1 = ∑Tmax

T=1 PT (1+ c0) logT = ∑Tmax
T=2 PT (1+ c0) logT ,

since log1 = 0. Note that PT concentrates to lower T ’s as r decreases and, therefore, we expect c1 to decrease as r
decreases.

The assumption that PT is independent of the ball center x can be relaxed if, instead, an upper bound on PT is
used that is independent of x. Moreover, in many practical applications in which the discontinuity arises due to
quantization, the assumption can be made to hold using dithering. Dithering also helps PT concentrate to 0 for
T > 1 as r decreases.

Since the ball has radius r /2, i.e., diameter r , each set of its partition also has the same diameter. In other words,
if we pick any point in each set of the partition and call it the “center” of the set, all other points of the set are within
r of the center. Thus we can repeat the argument of the previous section but on the ec1M set centers produced by

each of the CS
r /2 balls that constitute the r /2-covering of the set; a total of e2ES

r /2+c1M centers. Thus, with probability

1− (ce2ES
r /2+c1M−M w(δ,ε̃−α) −Tmaxe−2c2

0 M −PF ), the embedding satisfies (A.12):

(1−δ)g (d(x,y))− ε̃≤ d( f (x), f (y)) ≤ (1+δ)g (d(x,y))+ ε̃ (B.3)

for all x and y in S , where r = α
(1+δ)2Kg +2K f

�

Of course, an analysis along this line can be extended to multidimensional discontinuous functions for which
the continuity in each dimension cannot be considered independently of the other dimension. In this case, we
need to considering the T -part Lipschitz continuity property in multiple dimensions and perform the same anal-
ysis. In the interest of space, we do not describe this extension.

APPENDIX C. PROOF OF THEOREM 4.1

Proof. We consider the single coefficient y = h(〈a,x〉+ w), the pair of signals x and x′ at distance d = dS (x− x′)
apart, and their (signed) projected distance l = 〈a,x−x′〉. Studying how the mapping operates on this pair provides
the basis for how the mapping operates on the whole set of signals, in a manner similar to [1, 8, 12, 25].

Conditioned on l , the squared difference of the signals’ mapping has expected value over w equal to

E {(y − y ′)2|l } =
∫ 1

0
(h(u +w)−h(u + l +w))2 fw (w)d w (C.1)

=
∫ 1

0
h2(u +w)+h2(u + l +w)−2h(u +w)h(u + l +w)d w (C.2)

= 2(Rh(0)−Rh(l )) , (C.3)

with the last equality following from the shift-invariance of the autocorrelation.
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Thus, as a function of d , the expected value of the squared difference is

E {(y − y ′)2} =
∫ +∞

−∞
E {(y − y ′)2|l } fl (l |d)dl (C.4)

=
∫ +∞

−∞
2(Rh(0)−Rh(l )) fl (l |d)dl (C.5)

= 2

(
Rh(0)−

∫ +∞

−∞
Rh(l ) fl (l |d)dl

)
(C.6)

Using Parseval’s theorem and the characteristic function of fl (l |d), denoted using φl (ξ|d) we obtain

E {(y − y ′)2} = 2

(∑
k

(|Hk |2 −|Hk |2φl (2πk|d))

)
(C.7)

= 2
∑
k
|Hk |2(1−φl (k|d)) = g (d), (C.8)

where g (d) is the distance map (4.6).
Since h(t ) is bounded, the squared difference of any measurement is bounded, i.e., (y − y ′)2 ∈ [0, h̄2]. Using

Hoeffding’s inequality, it follows that, for M measurements,

P

(∣∣∣∣ 1

M

∑
m

(
ym − y ′

m

)2 − g (d)

∣∣∣∣≥ ε)= P

(∣∣∣∣ 1

M

∥∥y−y′
∥∥2

2 − g (d)

∣∣∣∣≥ ε)≤ 2e−2M ε2

h̄4 . (C.9)

As we describe in Section 3.1, using the union bound on a set S of Q points, i.e., at most Q2/2 point pairs, the
embedding guarantee in the theorem follows.

We should also note that if the distribution of h(〈a,x〉+ w)−h(〈a,x′〉+ w) can be shown to be sub-Gaussian,
even if h(·) is not bounded, a similar result can be shown using concentration of measure results on sub-Gaussian
random variables, e.g., see [72]. Restricting h(·) to be bounded is then a special case. Note that the distribution of
h(〈a,x〉+w)−h(〈a,x′〉+w) may be sub-Gaussian, even if the distribution of 〈a,x〉 is not.

The same proof steps can be used to bound the deviation of the measurements from their norm, i.e., to de-
rive (4.8). The main difference is in computing E {y2} instead of E {(y − y ′)2}, i.e.,

E {y2} =
∫ 1

0
h2(u +w) fw (w)d w (C.10)

=
∫ 1

0
h2(u +w)d w = Rh(0), (C.11)

and then using Hoeffding’s inequality and the union bound on Q point as above. To establish both the norm bound
and the embedding bound, the inequality should be established over Q points for the norm and Q(Q−1)/2 pairwise
distances, i.e., a union of Q2/2+Q/2 ≤Q2 events. �

APPENDIX D. PROOF OF PROPOSITION 4.3

Proof. By definition, the distance functions on both spaces satisfy the triangle inequality:

d(x,z) ≤ d(x,y)+d(y,z) (D.1)

d( f (x), f (z)) ≤ d( f (x), f (y))+d( f (y), f (z)) (D.2)

To show that g (d) is subadditive, we pick y in the line between x and z, such that d(x,z) = d , d(x,y) = λd , and
d(y,z) = (1−λ)d . This can be trivially done if S is a convex set. From (D.2) and (2.1) it follows that

(1−ε)g (d)−δ≤ (1+ε)g (λd)+δ+ (1+ε)g ((1−λ)d)+δ (D.3)

⇒ 1−ε
1+ε g (d)−3δ≤ g (λd)+ g ((1−λ)d) (D.4)

⇒ (1−2ε)g (d)−3δ≤ g (λd)+ g ((1−λ)d) (D.5)

Selecting a,b and d such that a +b = d and setting λ= a/(a +b) proves that g (d) is (2ε,3δ)-subadditive. �
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APPENDIX E. PROBABILITY OF CROSSING A UNIVERSAL QUANTIZATION THRESHOLD

We develop a bound for P2 assuming the measurement matrix A has entries drawn from an i.i.d. N (0,σ2)
distribution, followed by scaling with∆−1. In that case, the mth projection of a ball of radius r /2 will have diameter
at most ‖a‖2r /∆where ‖a‖2 is the norm of an N -dimensional Gaussian vector with varianceσ2. If the projection of
this ball, with dither added, includes an integer, then a quantization threshold has been crossed. Using I to denote
the number of integers in this projection, then P2 = P (I = 1), which is upper bounded by P2 ≤ E {I }.

For example, if the diameter ‖a‖2r /∆ of the projection is less than or equal to 1, then, thanks to the dither, P2 =
E {I } = ‖a‖2r /∆ and I can only take the values 0 or 1. Similarly, if ‖a‖2r /∆ > 1, then the projection will include at
least b‖a‖2r /∆c integer points and at most b‖a‖2r /∆c+1, depending on the value of the dither, i.e., with probability
1−‖a‖2r /∆+b‖a‖2r /∆c and ‖a‖2r /∆−b‖a‖2r /∆c, respectively. In other words, given ‖a‖2r /∆

E {I |‖a‖2r /∆} =b‖a‖2r /∆c(1−‖a‖2r /∆+b‖a‖2r /∆c)+ (E.1)

(b‖a‖2r /∆c+1)(‖a‖2r /∆−b‖a‖2r /∆c) (E.2)

=‖a‖2
r

∆
(E.3)

Since P2 ≤ E {I }, it follows that

P2 ≤ Ea{E {I |‖a‖2r /∆}} = Ea{‖a‖2r /∆} (E.4)

≤ r

∆

√
Ea

{‖a‖2
}= σr

∆

p
N := P 2, (E.5)

where the second step follows due to Jensen’s inequality. The bound becomes meaningful when r < ∆

σ
p

N
and

approaches 0 as r decreases.
Thus, c1 ≤ P 2(1+ c0) log2 and the probability that the embedding does not hold is upper bounded by

ce2ES
r /2+c1M−M w(δ,ε) +Tmaxe−2c2

0 M +PF ≤ e2ES
r /2+MP 2(1+c0) log2−2Mε2 +2e−2c2

0 M (E.6)

which decreases exponentially with M , as long as 2ε2 > P 2(1+c0) log2, allowing the embedding error ε to approach
0 with appropriate choice of r . Note that as r decreases, P2 decreases approximately linearly whereas ES

r /2 increases

as dimS · log(1/r ), where dimS is the Kolmogorov dimension of the set S :

dimS = lim
r→0

logCS
r

log(1/r )
= lim

r→0

logES
r

log(1/r )
. (E.7)
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