GENERATING BINARY PROCESSES WITH ALL-POLE SPECTRA
Petros Boufounos

MIT Digital signal Processing Group,
77 Massachusetts Avenue, Rm. 36-615, Cambridge, MA 02139
petrosb@alum.mit.edu

ABSTRACT the algorithm implements a Markov chain, the presentation in this

This paper presents an algorithm to generate autoregressive rand ,%F;e{ focr:Jstesl mostly on tgle s;pectrnal rprtopergis.r It SrhOUId be.tr;]oter:j
binary processes with predefined mean and predefined all-pole po Q,ﬁ It 1S not always possible 10 generate a binary process with a

spectrum, subject to specific constraints on the parameters of the aﬁ_rbltrary power spectrum [4, 8]. The algorithm described in this pa-

pole spectrum. The process is generated recursively using a Iineg?r is also a proof that all-pole spectra with parameters in the range

combination of the previously generated values to bias the gener escribed are realizable. . o .
tion of the next value. It is shown that an all-zero filter whitens the The problem can be c_:onS|d_er_ed as an infinite-length extension
process, and, therefore, the process has an all-pole spectrum. the pr_oblem Of generating a_f_|n|te-length sequence .Of random bi-
process is also described using an ergodic Markov chain, which igary _v_arlables W't.h a pre-specified mean for each_v_arlable and pre-
used to determine the appropriate initialization and to prove conveﬁpec'fIed correlation structure among them. .The flnlte-length prob-
gence if the algorithm is not initialized properly. The all-pole pa- em has been extensively studied in the statistical literature (for ex-
rameter range for which the algorithm is guaranteed to work is als mples, see [9—1_4]_and references within). I_—|oweve_r, the SOll.monS
derived. It is shown to be a linear constraint on the all-pole parame-eveIOped in the finite-length case cannot be |m.med|ately‘ applied to
ters and their magnitude, subject to the desired mean for the procej;-]se.nerate a random process. .MOSt of the solutions require that the
The example and simulations presented elucidate and confirm t (éngth of _the vector is k_nown in advance. Furtherm_ore, some have
theoretic developments. computational complexny_ that does not sc_:ale yvell with the length of_
Index Terms— autoregressive, binary sequence, stochastic proceéQe sequence. _The algorithm presented in this paper can be consid-
ered an extension of [13] to random processes. Although the genera-
tion principle is similar, this paper considers issues unique to random
1. INTRODUCTION processes such as stationarity, initialization, and convergence of the
algorithm. A whitening argument is also introduced to prove that the
The generation of random binary processes with pre-specified pow@fgorithm generates the desired process.
spectra is important in a variety of signal processing applications The next section defines the problem and establishes the nota-
such as randomized sampling, radar waveform generation and otfion. Section 3 describes the algorithm to generate the process. Sec-
ers [1-4]. For example, in randomized sampling applications, spedion 4 proves that under specific assumptions the algorithm generates
trally shaped binary zero-one random processes are used to dictdfe process desired and that the algorithm converges for any initial-
the sampling times and mitigate the effects of aliasing [1]. In radaization. An example with simulations is presented in Sec. 5. The
applications, binary processes taking valueqnl, 1} are useful ~Appendix proves the conditions on the parameters that guarantee the
because they exhibit low peak-to-average power ratio [3]. Unforassumptions in Sec. 4.
tunately, the generation of binary random processes with arbitrary
pre-determined power spectra is not straightforward. Although the 2. PROBLEM FORMULATION
generation of a random process with an arbitrary spectrum is possi-
ble by linear filtering of a white process, the output of the linear filterThe problem is to generate a random binary sequence, denoted using
cannot be guaranteed to be a binary sequence, even if the input is bjfn] and taking values i{0, 1}, with a predetermined mean =
nary. This paper presents an algorithm to generate binary random{x[n]}, and a predetermined autocorrelation denoted using:
processes that have pre-specified all-pole spectra, subject to certain 5
conditions on the spectrum parameters. Raz[m] = E{z[n]z[n + m]} = Kaa[m] + 17, 1)
Several algorithms exist to generate binary processes (for ey which i, [m] denotes the autocovariance. This is defined as the
amples see [5-7]). However, the spectrum of these processes is Qfgtocorrelation of the centered proces$n] = z[n] — pu, which is
ten dlfflcglt to compute an.d.analyze. The glgorlthm prgsented Sero mean and takes values{inji, 1 — u}:
parametrized by the coefficients of the desired centralized power
spectrum—subject to well-defined constraints—making the genera- K,o[m] = E{(z[n] — p)(z[n +m] — p)} = Rooa.[m].  (2)
tion of a process with a desired spectrum straightforward. Althoughl_he power spectrum is denoted usifig (), and the covariance
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in which the all-pole parameters are denoted usipgthe order of  system poles. This can be shown using the discrete-time final value
the model is denoted using and the scaling constadtdepends on  theorem on the dynamic equation describitifz.[n]}:

the variance of the process. Since the variance of a binary process

is a function of the process mean, the constaig determined by: E{zn]} = i Ef{ze[n — K]} )

and the all-pole parameteis. The all-pole parameters are assumed TellMls = B ETel '
pre-determined, such that the algorithm generates a process with the
spectral density desired in the application. The determination of thﬁ
parameters is not examined in this paper. The only assumption is
that they satisfy the constraints described in Sec. 4.4. This section demonstrates that the algorithm performs as desired by
evaluating the power spectrum of the generated process. In particu-
lar, the optimal causal minimum mean squared error (MMSE) pre-
dictor is used to predict the next value of the process. It is demon-
strated that the MMSE predictor is linear and time-invariant (LTI) by
the construction of the algorithm. By the orthogonality principle, the

) ] ] prediction error is white. Thus the spectrum is derived by inverting
1. The biasz,[n] for the generation of[n] is computed accord-  the L T| system that computes the error.

k=1

2. Power Spectrum

3. ALGORITHM

The algorithm generategn] iteratively usinge[n—1], ..., z[n—p]
as follows:

ing to the relationship: The optimal causal MMSE predictor fat[n] is the expectation
» conditional on all the previous valuesn — k], k > 1:
oln] = p+ Y aw(xln — k] - p) ) Geln] = E{zo[n]lzen— k), k= 1,2,...}, (10)
k=1
P which, using step 2 of the algorithm, can be computed using a linear
=p+ Z arxe[n — k] (5)  combination of the previous samples:
k=1 o
Ze[n] = E{wc[n]|xp[n]} = zo[n] — p (€ H)
in which thea,, andyu are the parameters of the algorithm. P
2. The sample:[n] is randomly generated from a binary distri- = Z apze[n — k. 12)
k=1

bution biased by, [n] as follows:
The prediction error, which is white by the orthogonality principle,
[ 1 with probabilityz; [n] 6 is equal to:
[n] =9 0 with probability 1 — 5[] ©)
e[n] = zc[n] — Zc[n] (13)

Conditional onz;[n] the generation of[n] is independent on any P
other variabler[n — k]. Unless otherwise noted, the assumption in =zc[n] =) arweln — k). (14)
the execution and the analysis of this algorithm is that the bias com- k=1
puted in Eq. (4) is within the interval, 1]. Section 4.4 discusses the
necessary constraints to guarantee that the bias is within the boun
It should be noted that the algorithm describgs"aorder Markov
process.

herefore, the LTI systentl (2) = 1 — >°F_, a2~ " whitens the
nerated process.[n] by calculating the prediction error. The
power spectrum af.[n] follows:
; A A
Saeae(€7) = oz = - , (19)
4. ANALYSIS [H(e7)|? 1 =325 axe /P2
for some constant A, as desired. The stationarity and the conver-

In this section it is demonstrated that the mean/ef| is »,, and that  gance of the algorithm is demonstrated in the next section.
the power spectrum aof.[n], which corresponds to the covariance

spectrum of[n], is the all-pole spectrum in Eq. (3), as desired. The .

properties of the implied Markov chain are used in section 4.3 to4'3' Markov Chain

demonstrate the stationarity and the convergence of the algorithm.As noted in section 3, the algorithm defineg'a order Markov pro-
cess, in which thdz[n — k],k = 1,...,p} determine the state at

4.1. Mean any given timen. Since thex[n— k] only take discrete binary values,
the process can also be represented usi2ystate Markov chain.
The mean oft[n] can be evaluated as follows: Using the properties of this Markov chain, this section demonstrates
that the algorithm reaches a stationary steady state.
Efz[n]} = Eqypmy {E{z[n]|zo[n]} = E{zs[n]} @) In this section(z[n — 1],...,z[n — p]) denotes the state of the
P system before each iteration of the algorithm in section 3 has been
=p+ Y an(B{zln — K} — p). (8)  executed. The state transition probabilities are:
k=1

_ P((zln],...,z[n—p+1])|(z[n —1],...,z[n —p])) =
The sum remains equal {@ as long as the expected value of all »
previousz[n — k], k = 1,...,pis alsou. Thus, if the algorithm is o Zak(x[n — K] — ), if 2[n] = 1
initialized with p biased binary random variables with mean equal to Pt
1, the mean of the process will stay constantat P
Even if the algorithm is not initialized as described, the mean 1= (u+ Y ar(@ln— k] —p), ifz[n] =0,
of z[n] converges tq: at a rate governed by the magnitude of the k=1

(16)



which is equal ta; [n] and1 —x; [n] if 2[n] = 1 and 0, respectively. Llax] +@u = 1) 2 ax = 2u

The transition probabilities are zero for all other state transitions. It

is assumed that the parameters are such that the probabilities in (16) 2ak) Sar =3 |ax|
are both strictly positive, which is equivalent@o< z,[n] < 1 for
all n, as discussed in section 4.4. I

Under this assumption, it can be shown any state can be reached
with positive probability withinp transitions from any other state.
Assumingp is finite, it follows that the Markov chain is ergodic,
and, therefore, the chain has a unique stationary distribution. The 1 > lanl
algorithm can be initialized by randomly starting in one of fife
states, according to the steady state distribution. Alternatively, the
initialization can be arbitrary, and the ergodicity property guarantees
convergence to the steady state distribution. This implies that the au-
tocorrelation and the power spectrum of the process converge to the Sap = -3 |ax]
all-pole model. The rate of convergence is governed by the second 0l
largest eigenvalue of the implie¥ x 2P transition matrix. At the \w
steady state, the process is strict sense stationary, as desired.

7

S lar] + (1 —20) Sar =224
4.4. Parameter Range

A necessary condition in the discussion above is that the bigs], Fig. 1. Coefficient Space for < 1/2. The shaded area is the set
computed at every iteration of the algorithm is always within theof coefficients for which the algorithm is guaranteed not to overflow.
range(0, 1). This can be guaranteed for a given set of paramaeters As p increases, the two constraints due to Eq. (25) and (26) pivot
if the following inequalities are satisfied: around the point1, 1), as shown in the plot. The shaded area is
maximized ajx = 1/2. Forp > 1/2 the constraints cross over each

P .. .
other, and the shaded area is identical to the shaded aréa-for.
0<p+> an(aln—k —p) <1 (17) o
k=1
P
o —n<> anzen - K <1-p, (18) 5. TWO-POLE EXAMPLE
k=1
In this section a simple two-pole example with = 0.1, andas =
inwhichz.[n] can take either of two values=— .., whichiis positive,  —0.5 is considered and simulated for different values of the process
and—p, which is negative. In the Appendix it is shown that (18) is meany. Although this is only one, arbitrarily chosen, example, sim-
equivalent to the following constraint on the parameters: ulations for various parameter choices verify the results. For this
» . choice of parameter values the constraint in (19) is equivalent to
B 1 _ 5/14 < p < 9/14. Therefore, foru within that range, the bias
(; Ak 1) Z = 24] (; k] 1) ' (19) xp[n] is guaranteed to be with the bouri@s1].

One way to accommodate overflows is to hard limit the bias
which corresponds to the shaded area in Fig. 1.uAends to 1/2,  xz,[n] to be 0 or 1 whenever it is computed below or above the
the constraint is relaxed, eventually becoming: range|0, 1], respectively. This is the method used in the simula-

tions presented. For the parameter values chosen this implies that
- 1t —1/9 20 for u < 5/14, the algorithm sometimes hard-limits the bias to zero,
Z lax| < 1forp=1/2. (20) while for 1 > 9/14 the algorithm hard-limits the bias to one. In
k=1 these cases, the true mean of the generated process is respectively

This condition is sufficient but not necessary fofin] to be within ~ greater or less thaa. Of course, if the algorithm overflows, the re-

the bounds. There exist combinations of parametgandy thatdo ~ Sults in the previous sections do not hold, and the algorithm is not

not satisfy the bound derived, and, yet, the algorithm does not oveguaranteed to converge or to produce a stationary process.

flow if properly initialized. For example, consider the trivial case of ~ Figure 2 presents simulation results for various valueg.ofo

= 0, or 1 for any set of,, outside the constraint in (19), initialized facilitate comparison, the generated process is centralized using the

with 2[0] = ... = z[p — 1] = 0 or 1, respectively. However, with sample mean and normalized to have unit sample variance. The

all such combinations of parameters it can be shown that there ispower spectral density is subsequently computed using the average

state for whiche, [n] is exactly equal to 0 or 1, and with a small per- periodogram method for a window size of 256 taps with 128 points

turbation of the parameters the algorithm overflows. Furthermoregverlap. The figure plots the computed sample power spectral den-

the constraint in Eq. (19) is necessary to guarantee that arbitrary ingity. The ideal power spectral density corresponding to Eq. 3 is also

tialization does not cause, [n] to overflow. It is also necessary in plotted for the purposes of comparison. The figure only plots the

proving the ergodicity of the implied Markov chain using the argu-results fory = 0.1,0.2,0.3,0.4. The results fop. = 0.5 coincide

ment in Sec. 4.3. with = 0.4 since there is no overflow for both values, and the
Although this algorithm demonstrates that it is possible to generresults fory, > 0.5 coincide with the ones for — .

ate autoregressive processes with parameters that satisfy (18), ther The simulations confirm that if. is within the constraints of

is no implication about autoregressive processes with parameters tHad). (19) the sample power spectral density of the generated process

do not satisfy (19). It might still be possible to generate such prois the one desired. [i is outside the constraints, the algorithm over-

cesses using different algorithms. flows, and the sample mean and the sample power spectral density
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Fig. 2. Simulation results for a two-pole process with= 0.1 and
az = —0.5, for various values of.. The plots present the experi- A. OVERFLOW CONSTRAINTS
mental power spectrum, centralized by removing the sample mean
and normalized such that the sample variance is unity. The dashddie sum in (18) is maximized wher.[n — k] = 1 — p for all
line plots the desired spectrum properly normalized. The results fgpositivea,, andz.[n — k] = —p for all negativea,. Similarly, the
= 0.5 (not plotted) coincide with the results for = 0.4, as ex-  sum is minimized whem.[n — k] = —pu for all positivea, and
pected. The results for > 0.5 coincide with the results far — . ze[n — k] = 1 — p for all negativeay. To guaranteer;[n] stays
within the bounds, it is sufficient to ensure that the maximum of the
sum is less than — p and that the minimum is greater tharu,

do not coincide with the algorithm parameters. which implies:
A=p) > a—p >, ax<l—p, (21)
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