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Abstract

Quantization noise shaping is commonly used in oversampled A/D and
D/A converters with uniform sampling. This paper considers quantization
noise shaping for arbitrary finite frame expansions based on generalizing
the view of first-order classical oversampled noise shaping as a compen-
sation of the quantization error through projections. Two levels of gener-
alization are developed, one a special case of the other, and two different
cost models are proposed to evaluate the quantizer structures. Within
our framework, the synthesis frame vectors are assumed given, and the
computational complexity is in the initial determination of frame vector
ordering, carried out off-line as part of the quantizer design. We consider
the extension of the results to infinite shift-invariant frames and consider
in particular filtering and oversampled filter banks.

1 Introduction

Quantization methods for frame expansions have received considerable atten-
tion in the last few years. Simple scalar quantization applied independently on
each frame expansion coefficient, followed by linear reconstruction is well known
to be suboptimal [8, 7]. Several algorithms have been proposed that improve
performance although with significant complexity either at the quantizer [9] or
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in the reconstruction method [9, 11]. More recently, frame quantization meth-
ods inspired by uniform oversampled noise shaping (referred to generically as
Sigma-Delta noise shaping) have been proposed for finite uniform frames [1, 2]
and for frames generated by oversampled filterbanks [3]. In [1, 2] the error due
to the quantization of each expansion coefficient is subtracted from the next
coefficient. The method is algorithmically similar to classical first order noise
shaping and uses a quantity called frame variation to determine the optimal
ordering of frame vectors such that the quantization error is reduced. In [3]
higher order noise shaping is extended to oversampled filterbanks using a pre-
dictive approach. That solution performs higher order noise shaping, where the
error is filtered and subtracted from the subsequent frame coefficients.

In this paper we view noise shaping as compensation of the error resulting
from quantizing each frame expansion coefficient through a projection onto the
space defined by another synthesis frame vector. This requires only knowledge
of the synthesis frame set and a pre-specified ordering and pairing for the frame
vectors. Instead of attempting a purely algorithmic generalization, we incorpo-
rate the use of projections and explore the issue of frame vector ordering. Our
method improves the average quantization error even if the frame vector order-
ing is not optimal. However, we also demonstrate the benefits from determining
the optimal ordering. The theoretical framework we present provides a design
method for noise shaping quantizers under the cost functions presented. The
generalization we propose improves the error in reconstruction due to quantiza-
tion even for non-redundant frame expansions (i.e. a basis set) when the frame
vectors are non-orthogonal. This paper elaborates and expands on [4].

In section 2 we present a brief summary of frame representations to establish
notation and we describe classical first-order Sigma-Delta quantizers in the ter-
minology of frames. In section 3 we propose two generalizations, which we refer
to as the sequential quantizer and the tree quantizer, both assuming a known
ordering of the frame vectors. Section 4 explores two different cost models for
evaluating the quantizer structures and determining the frame vector ordering.
The first is based on a stochastic representation of the error and the second on
deterministic upper bounds. In section 5 we determine the optimal ordering of
coefficients assuming the cost measures in section 4 and show that for Sigma-
Delta noise shaping, the natural (time-sequential) ordering is optimal. We also
show that for finite frames the determination of frame vector ordering can be
formulated in terms of known problems in graph theory.

In section 6 we consider cases where the projection is restricted and the
connection to the work in [1, 2]. Furthermore, we examine the natural extension
to the case of higher order quantization. Section 7 presents experimental results
on finite frames that verify and validate the theoretical ones. In section 8 we
discuss infinite frame expansions. We apply the results to infinite shift invariant
frames, and view filtering and classical noise shaping as an example. We also
consider the case of reconstruction filterbanks, and how our work relates to [3].
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2 Concepts and Background

In this section we present a brief summary of frame expansions to establish
notation, and we describe oversampling in the context of frames.

2.1 Frame representation and Quantization

A vector x in a space W of finite dimension N is represented with the finite
frame expansion:

x =

M
∑

k=1

akfk, ak = 〈x, fk〉. (1)

The space W is spanned by both sets: the synthesis frame vectors {fk, k =
1, . . . , M}, and the analysis frame vectors {fk, k = 1, . . . , M}. This condition
ensures that M ≥ N . Details on the relationships of the analysis and synthesis
vectors can be found in a variety of texts such as [8, 10]. The ratio r = M/N
is referred to as the redundancy of the frame. The equations above hold for
infinite dimensional frames, with an additional constraint that ensures the sum
converges for all x with finite length. An analysis frame is referred to as uniform
if all the frame vectors have the same magnitude, i.e. ||fk|| = ||f l|| for all k and
l. Similarly, a synthesis frame is uniform if ||fk|| = ||fl|| for all k and l.

The coefficients ak above are scalar, continuous quantities. In order to digi-
tally process, store, or transmit them, they need to be quantized. The simplest
quantization strategy, which we call direct scalar quantization, is to quantize
each one individually to âk = Q(ak) = ak + ek, where Q(·) denotes the quan-
tization function and ek the quantization error for each coefficient. The total
additive error vector from this strategy is equal to

E =

M
∑

k=1

ekfk. (2)

It is easy to show that if the frame forms an orthonormal basis, then direct scalar
quantization is optimal in terms of minimizing the error magnitude. However,
this is not the case for all other frame expansions [1, 2, 3, 5, 7, 8, 9, 11]. Noise
shaping is one of the possible strategies to reduce the error magnitude. In
order to generalize noise shaping to arbitrary frame expansions, we first present
traditional oversampling and noise shaping formulated in frame terms.

2.2 Sigma-Delta Noise shaping

Oversampling in time of bandlimited signals is a well studied class of frame
expansions. A signal x[n] or x(t) is upsampled or oversampled to produce a
sequence ak. In the terminology of frames, the upsampling operation is a frame
expansion in which fk[n] = rfk[n] = sinc(π(n − k)/r), with sinc(x) = sin(x)/x.
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Figure 1: Traditional first order noise shaping quantizer

The sequence ak is the corresponding ordered sequence of frame coefficients:

ak = 〈x[n], fk[n]〉 =
∑

n

x[n]sinc(π(n − k)/r) (3)

x[n] =
∑

k

akfk[n] =
∑

k

ak

1

r
sinc(π(n − k)/r). (4)

Similarly for oversampled continuous time signals:

ak = 〈x(t), fk(t)〉 =

∫ +∞

−∞

x(t)
r

T
sinc(

πrt

T
− πk) (5)

x(t) =
∑

k

akfk(t) =
∑

k

aksinc(
πrt

T
− πk), (6)

where T is the Nyquist sampling period for x(t).
Sigma-Delta quantizers can be represented in a number of equivalent forms

[5]. The representation shown in figure 1 most directly represents the view that
we extend to general frame expansions. Performance of Sigma-Delta quantizers
is sometimes analyzed using an additive white noise model for the quantization
error [5]. Based on this model it is straightforward to show that the in-band
quantization noise power is minimized when the scaling coefficient c is chosen
to be c = sinc(π/r)1.

We view the process in figure 1 as an iterative process of coefficient quan-
tization followed by error projection. The quantizer in the figure quantizes a′

l

to âl = a′
l + el. Consider xl[n], such that the coefficients up to al−1 have been

quantized and el−1 has already been scaled by c and subtracted from al to
produce a′

l:

xl[n] =

l−1
∑

k=−∞

âkfk[n] + a′
lfl[n] +

+∞
∑

k=l+1

akfk[n] (7)

= xl+1[n] + el(fl[n] − c · fl+1[n]). (8)

The incremental error el(fl[n]−c · fl+1[n]) at the lth iteration of (8) is minimized
if we pick c such that c · fl+1[n] is the projection of fl[n] onto fl+1[n]:

c = 〈fl[n], fl+1[n]〉/||fl+1[n]||2 = sinc(π/r). (9)

1With typical oversampling ratios, this coefficient is close to unity and is often chosen as
unity for computational convenience.
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This choice of c projects to fl+1[n] the error due to quantizing al and compen-
sates for this error by modifying al+1. Note that the optimal choice of c in (9)
is the same as the optimal choice of c under the additive white noise model for
quantization.

Minimizing the incremental error is not necessarily optimal in terms of min-
imizing the overall quantization error. It is, however, optimal in terms of the
two cost functions which we describe in section 4. Before we examine these cost
functions we generalize first order noise shaping to general frame expansions.

3 Noise shaping on Frames

In this section we propose two generalizations of the discussion of section 2.2 to
arbitrary finite-frame representations of length M . Throughout the discussion
in this section we assume the ordering of the synthesis frame vectors (f1, . . . , fM ),
and correspondingly the ordering of the synthesis coefficients (a1, . . . , aM ) has
already been determined.

We examine the ordering of the frame vectors in section 5. However, we
should emphasize that the execution of the algorithm and the ordering of the
frame vectors are distinct issues. The optimal ordering can be determined once,
off-line, in the design phase. The ordering only depends on the properties of the
synthesis frame, not the data or the analysis frame.

3.1 Single coefficient quantization

To illustrate our approach, we consider quantizing the first coefficient a1 to
â1 = a1 + e1, with e1 denoting the additive quantization error. Equation (1)
then becomes:

x = â1f1 +

M
∑

k=2

akfk − e1f1 (10)

= â1f1 + a2f2 +

M
∑

k=3

akfk − e1c1,2f2 − e1(f1 − c1,2f2). (11)

As in (8), the norm of e1(f1 − c1,2f2) is minimized if c1,2f2 is the projection of
f1 onto f2:

c1,2f2 = 〈f1,u2〉u2 (12)

= 〈f1,
f2

||f2||
〉

f2

||f2||
(13)

⇒ c1,2 =
〈f1,u2〉

||f2||
=

〈f1, f2〉

||f2||2
, (14)

where uk = fk/||fk|| are unit vectors in the direction of the synthesis vectors.
Next, we incorporate the term −e1c1,2f2 in the expansion by updating a2:

a′
2 = a2 − e1c1,2. (15)
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After the projection, the residual error is equal to e1(f1−c1,2f2). To simplify
this expression, we define r1,2 to be the direction of the residual error, and e1c̃1,2

to be the error amplitude:

r1,2 = (f1 − c1,2f2)/||f1 − c1,2f2|| (16)

c̃1,2 = ||f1 − c1,2f2|| = 〈f1, r1,2〉. (17)

Thus, the residual error is e1〈f1, r1,2〉r1,2 = e1c̃1,2r1,2. We refer to c̃1,2 as the
error coefficient for this pair of vectors.

Substituting the above, equation (11) becomes

x = â1f1 + a′
2f2 +

M
∑

k=3

akfk − e1c̃1,2r1,2. (18)

Equation (18) can be viewed as decomposing e1f1 into the direct sum (e1c1,2f2)⊕
(e1c̃1,2r1,2) and compensating only for the first term of this sum. The component
e1c̃1,2r1,2 is the final quantization error after one step is completed.

Note that for any pair of frame vectors the corresponding error coefficient
c̃k,l is always positive. Also, if we assume a uniform synthesis frame, there is a
symmetry in the terms we defined, i.e. ck,l = cl,k and c̃k,l = c̃l,k, for any pair
k 6= l.

3.2 Sequential Noise Shaping Quantizer

The process in section 3.1 is iterated by quantizing the next (updated) coeffi-
cient until all the coefficients have been quantized. Specifically, the algorithm
continues as follows:

1. Quantize coefficient k by setting âk = Q(a′
k).

2. Compute the error ek = âk − a′
k.

3. Update the next coefficient ak+1 to a′
k+1 = ak+1 − ekck,k+1, where

ck,l =
〈fk, fl〉

||fl||2
. (19)

4. Increase k and iterate from step 1 until all the coefficients have been
quantized.

We refer to this procedure as the sequential first order noise shaping quantizer.
Every iteration of the sequential quantization contributes ek c̃k,k+1rk,k+1 to

the total quantization error, where

rk,l =
fk − ck,lfl

||fk − ck,lfl||
, and (20)

c̃k,l = ||fk − ck,lfl||. (21)
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Since the frame expansion is finite, we cannot compensate for the quantization
error of the last step eM fM . Thus, the total error vector is

E =

M−1
∑

k=1

ek c̃k,k+1rk,k+1 + eM fM . (22)

Note that c̃k,lrk,l is the residual from the projection of fk onto fl, and there-
fore it has magnitude less than or equal to fk. Specifically, for all k and l,

c̃k,l ≤ ||fk||, (23)

with equality holding if and only if fk is orthogonal to fl. Furthermore note that
since c̃k,l is the magnitude of a vector it is always nonnegative.

3.3 The Tree Noise Shaping Quantizer

The sequential quantizer can be generalized by relaxing the sequence of error
assignments: Again, we assume that the coefficients have been pre-ordered and
that the ordering defines the sequence in which coefficients are quantized. In
this generalization, we associate with each ordered frame vector fk another, not
necessarily adjacent, frame vector flk further in the sequence (and, therefore,
for which the corresponding coefficient has not yet been quantized) to which
the error is projected using (15). With this more general approach some frame
vectors can be used to compensate for more than one quantized coefficient.

In terms of the algorithm presented in section 3.2, step 3 changes to:

3. Update alk to a′
lk

= alk − ekck,lk , where ck,l = 〈fk,fl〉
||fl||2

, and lk > k.

The constraint lk > k ensures that alk is further in the sequence than ak.
For finite frames, this defines a tree, in which every node is a frame vector or
associated coefficient. If a coefficient ak uses coefficient alk to compensate for
the error, then ak is a direct child of alk in that tree. The root of the tree is the
last coefficient to be quantized, aM .

We refer to this as the tree noise shaping quantizer. The sequential quantizer
is, of course, a special case of the tree quantizer where lk = k + 1.

The resulting expression for x is given by:

x =

M
∑

k=1

âkfk −

M−1
∑

k=1

ekc̃k,lkrk,lk − eM fM (24)

= x̂−

M−1
∑

k=1

ekc̃k,lkrk,lk − eM ||fM ||uM , (25)

where x̂ is the quantized version of x after noise shaping, and the ek are the
quantization errors in the coefficients after the corrections from the previous
iterations have been applied to ak. Thus, the total error of the process is:

E =

M−1
∑

k=1

ekc̃k,lkrk,lk + eM fM . (26)
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4 Error Models and Analysis

In order to compare and design quantizers, we need to be able to compare the
magnitude of the error in each. However, the error terms ek in equations (2),
(22), and (26) are data dependent in a very non-linear way. Furthermore, due
to the error projection and propagation performed in noise shaping, the coeffi-
cients being quantized at every step are different for the different quantization
strategy. Therefore, for each k, ek is different among the equations (2), (22),
and (26), making the precise analysis and comparison even harder. In order to
compare quantizer designs we need to evaluate them using cost functions that
are independent of the data.

To simplify the problem further, we focus on cost measures for which the
incremental cost at each step is independent of the whole path and the data. We
refer to these as incremental cost functions. In this section we examine two such
models, one stochastic and one deterministic. The first cost function is based on
the white noise model for quantization, while the second provides a guaranteed
upper bound for the error. Note that for the rest of this development we assume
linear quantization, with ∆ denoting the interval spacing of the linear quantizer.
We also assume that the quantizer is properly scaled to avoid overflow.

4.1 Additive Noise Model

The first cost function assumes the additive uniform white noise model for quan-
tization error, to determine the expected energy of the error E{||E||2}. An ad-
ditive noise model has previously been applied to other frame expansions [3, 9].
Its assumptions are often inaccurate, and it only attempts to describe average
behavior, with no guarantees on performance comparisons or improvements for
individual realizations. However it can often lead to important insights on the
behavior of the quantizer.

In this model all the error coefficients ek are assumed white and identically
distributed,with variance ∆2/12, where ∆ is the interval spacing of the quan-
tizer. They are also assumed to be uncorrelated with the quantized coefficients.
Thus, all error components contribute additively to the error power, resulting
in:

E{||E||2} =
∆2

12

(

M
∑

k=1

||fk||
2

)

, (27)

E{||E||2} =
∆2

12

(

M−1
∑

k=1

c̃2
k,k+1 + ||fM ||2

)

, and (28)

E{||E||2} =
∆2

12

(

M−1
∑

k=1

c̃2
k,lk

+ ||fM ||2

)

, (29)

for the direct, the sequential and the tree quantizer respectively.
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4.2 Error magnitude upper bound

As an alternative to the cost function in section 4.1, we also consider an upper
bound for the error magnitude. For any set of vectors ui, ||

∑

k uk|| ≤
∑

k ||uk||,
with equality only if all vectors are collinear, in the same direction. This leads
to the following upper bound on the error:

||E|| ≤
∆

2

(

M
∑

k=1

||fk||

)

, (30)

||E|| ≤
∆

2

(

M−1
∑

k=1

c̃k,k+1 + ||fM ||

)

, and (31)

||E|| ≤
∆

2

(

M−1
∑

k=1

c̃k,lk + ||fM ||

)

, (32)

for direct, sequential and tree quantization, respectively.
The vector rM−1,lM−1

is by construction orthogonal to fM and the rk,lk are
never collinear, making the bound very loose. Thus, a noise shaping quantizer
can be expected in general to perform better than what the bound suggests.
Still, for the purposes of this discussion we treat this upper bound as a cost
function and we design the quantizer such that this cost function is minimized.

4.3 Analysis of the Error Models

To compare the average performance of direct coefficient quantization to the
proposed noise shaping we only need to compare the magnitude of the right hand
side of equations (27) thru (29), and (30) thru (32) above. The cost of direct
coefficient quantization computed using equations (27) and (30) does not change,
even if the order in which the coefficients are quantized changes. Therefore,
we can assume the ordering of the synthesis frame vectors and the associated
coefficients is given, and compare the three strategies. In this section we show
that for any frame vector ordering, the proposed noise shaping strategies reduce
both the average error power, and the worst case error magnitude, as described
using the proposed functions, compared to direct scalar quantization.

When comparing the cost functions using inequalities, the multiplicative

terms ∆
2

12
and ∆

2
, common in all equations, are eliminated, because they do not

affect the monotonicity. Similarly for the final additive term ||fM ||2 and ||fM ||,
which also exists in all equations and does not affect the monotonicity of the
comparison. To summarize, we need to compare the following quantities:

M−1
∑

k=1

||fk||
2,

M−1
∑

k=1

c̃2
k,k+1, and

M−1
∑

k=1

c̃2
k,lk

, (33)

in terms of the average error power, and

M−1
∑

k=1

||fk||,

M−1
∑

k=1

c̃k,k+1, and

M−1
∑

k=1

c̃k,lk , (34)
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in terms of the guaranteed worst case performance. These correspond to di-
rect coefficient quantization, sequential noise shaping, and tree noise shaping
respectively.

Using (23) it is easy to show that both noise shaping methods have lower cost
than direct coefficient quantization for any frame vector ordering. Furthermore,
we can always pick lk = k + 1, and, therefore, the tree noise shaping quantizer
can always achieve the cost of the sequential quantizer. Therefore, we can always
find lk such that the comparison above becomes:

M−1
∑

k=1

||fk||
2 ≥

M−1
∑

k=1

c̃2
k,k+1 ≥

M−1
∑

k=1

c̃2
k,lk

, and (35)

M−1
∑

k=1

||fk|| ≥

M−1
∑

k=1

c̃k,k+1 ≥

M−1
∑

k=1

c̃k,lk . (36)

The relationships above hold with equality if and only if all the pairs (fk, fk+1)
and (fk, flk) are orthogonal. Otherwise the comparison with direct coefficient
quantization results in a strict inequality. In other words, noise shaping im-
proves the quantization cost compared to direct coefficient quantization even if
the frame is not redundant, as long as the frame is not an orthogonal basis2.
Note that the coefficients ck,l are 0 if the frame is an orthogonal basis. There-
fore, the feedback terms ekck,lk in step 3 of the algorithms described in section
3 are equal to 0. In this case, the strategies in section 3 reduce to direct coef-
ficient quantization, which can be shown to be the optimal scalar quantization
strategy for orthogonal basis expansions.

We can also determine a lower bound for the cost, independent of the frame
vector ordering, by picking jk = argminlk 6=k c̃k,lk . This does not necessarily
satisfy the constrain jk > k of section 3.3, therefore the lower bound cannot
always be met. However, if a quantizer can meet it, it is the minimum cost
first order noise shaping quantizer, independent of the frame vector ordering,
for both cost functions.

The inequalities presented in this section are summarized below.

For given frame ordering, jk = argminlk 6=kc̃k,lk and some {lk > k} :

M
∑

k=1

c̃k,jk
≤

M−1
∑

k=1

c̃k,lk + ||fM || ≤

M−1
∑

k=1

c̃k,k+1 + ||fM || ≤

M
∑

k=1

||fk||, (37)

and

M
∑

k=1

c̃2
k,jk

≤

M−1
∑

k=1

c̃2
k,lk

+ ||fM ||2 ≤

M−1
∑

k=1

c̃2
k,k+1 + ||fM ||2 ≤

M
∑

k=1

||fk||
2, (38)

2An oblique basis can reduce the quantization error compared to an orthogonal one if noise
shaping is used, assuming the quantizer uses the same ∆. However, more quantization levels
might be necessary to ensure that the quantizer does not overflow if an oblique basis is used.
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where the lower and upper bounds are independent of the frame vector ordering.

In the discussion above we showed that the proposed noise shaping reduces
the average and the upper bound of the quantization error for all frame ex-
pansions. The strategies above degenerate to direct coefficient quantization if
the frame is an orthogonal basis. These results hold without any assumptions
on the frame, or the ordering of the frame vectors and the corresponding co-
efficients. Finally, we derived a lower bound for the cost of a first order noise
shaping quantizer. In the next section we examine how to determine the optimal
ordering and pairing of the frame vectors.

5 First Order Quantizer Design

As indicated earlier, an essential issue in first order quantizer design based on the
strategies outlined in this paper is determining the ordering of the frame vectors.
The optimal ordering depends on the specific set of synthesis frame vectors, but
not on the specific signal. Consequently, the quantizer design (i.e. the frame
vector ordering) is carried out off-line and the quantizer implementation is a
sequence of projections based on the ordering chosen for either the sequential
or tree quantizer.

5.1 Simple Design Strategies

An obvious design strategy is to determine an ordering and pairing of the co-
efficients such that the quantization of every coefficient ak is compensated as
much as possible by the coefficient alk . This can be achieved by setting lk = jk,
with jk = argminlk 6=k c̃k,lk , as defined for the lower bounds of equations (37)
and (38). When this strategy is possible to implement, i.e. jk > k, it results in
the optimal ordering and pairing under both cost models we discussed, since it
meets the lower bound for the quantization cost.

This corresponds to how a traditional Sigma-Delta quantizer works. When
an expansion coefficient is quantized, the coefficients that can compensate for
most of the error are the ones most adjacent. This implies that the time se-
quential ordering of the oversampling frame vectors is the optimal ordering for
first order noise shaping (another optimal ordering is the time-reversed, i.e. the
anticausal version). We examine this further in section 8.1.

Unfortunately, for certain frames, this optimal pairing might not be feasible.
Still, it suggests a heuristic for a good coefficient pairing: at every step k, the
error from quantizing coefficient ak is compensated using the coefficient alk that
can compensate for most of the error, picking from all the frame vectors whose
corresponding coefficients have not yet been quantized. This is achieved by
setting lk = argminl>k c̃k,l. This, in general is not an optimal strategy, but an
implementable heuristic. Optimal designs are slightly more involved and we
discuss these next.
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Figure 2: Examples of graph representations of first order noise shaping quan-
tizers on a frame with five frame vectors. Note that the weights shown represent
the upper bound of the quantization error. To represent the average error power
the weights should be squared.

5.2 Quantization graphs and optimal quantizers

From section 3.3 it is clear that a tree quantizer can be represented as a graph—
specifically, a tree—in which all the nodes of the graph are coefficients to be
quantized. Similarly for a sequential quantizer, which is a special case of the
tree quantizer, the graph is a linear path passing through all the nodes ak in the
correct sequence. In both cases, the graphs have edges (k, lk), pairing coefficient
ak to coefficient alk if and only if the quantization of coefficient ak assigns the
error to the coefficient alk .

Figure 2 shows four examples of graph representations of first order noise
shaping quantizers on a frame with five frame vectors. The top two figures, (a)
and (b), demonstrate two sequential quantizers ordering the frame vectors in
their natural and their reverse order respectively. In addition, parts (c) and (d)
of the figure demonstrate two general tree quantizers for the same frame.

In the figure a weight is assigned to each edge. The cost of each quantizer
is proportional to the total weight of the graph with the addition of the cost
of the final term. For a uniform frame the magnitude of the final term is
the same, independent of which coefficient is quantized last. Therefore it is
eliminated when comparing the cost of quantizer designs on the same frame.
Thus, designing the optimal quantizer corresponds to determining the graph
with the minimum weight.

We define a graph that has the frame vectors as nodes V = {f1, . . . , fM} and
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the edges have weight w(k, l) = c̃2
k,l or w(k, l) = c̃k,l if we want to minimize the

expected error power or the upper bound of the error magnitude respectively.
We call this graph the quantization error assignment graph. On this graph, any
acyclical path that visits all the nodes—also known as a hamiltonian path—
defines a first order sequential quantizer. Similarly, any tree that visits all the
nodes—also known as a spanning tree—defines a tree quantizer.

The minimum cost hamiltonian path defines the optimal sequential quan-
tizer. This can be determined by solving the traveling salesman problem (TSP).
The TSP is of course NP-complete in general, but has been extensively studied
in the literature [6]. Similarly, the optimal tree quantizer is defined by the solu-
tion of the minimum spanning tree problem. This is also a well studied problem,
solvable in polynomial time [6]. Since any path is also a tree, if the minimum
spanning tree is a hamiltonian path, then it is also the solution to the traveling
salesman problem. The results are easy to extend to non-uniform frames.

We should note that in general the optimal ordering and pairing depend
on which of the two cost functions we choose to optimize for. Furthermore,
we should reemphasize that this optimization is performed once, off-line, at the
design stage of the quantizer. Therefore, the computational cost of solving these
problems does not affect the complexity of the resulting quantizer.

6 Further Generalizations

In this section we consider two further generalizations. In section 6.1 we examine
the case for which the product term is restricted. In section 6.2 we consider the
case of noise shaping using more than one vector for compensation. Although
a combination of the two is possible, we do not consider it in this paper.

6.1 Projection Restrictions

The development in this paper uses the product ekck,lk to compensate for the er-
ror in quantizing coefficient ak using coefficient alk . Implementation restrictions
often do not allow for this product to be computed to a satisfactory precision.
For example, typical Sigma-Delta converters eliminate this product altogether
by setting c = 1. In such cases, the analysis using projections breaks down.
Still, the intuition and approach remains applicable.

The restriction we consider is one on the product: the coefficients ck,lk are
restricted to be in a discrete set A = {α1, ..., αK}. Requiring the coefficient to
be an integer power of 2 or to be only ±1 are examples of such constraints. In
this case we use again the algorithms of section 3, with ck,l now chosen to be
the coefficient in A closest to achieving a projection, i.e. with ck,l specified as:

ck,l = argminc∈A||fk − cfl|| (39)

As in the unrestricted case, the residual error is ek(fk − ck,lfl) = ekc̃k,lrk,l with
rk,l and c̃k,l defined as in equations (20) and (21), respectively.
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To apply either of the error models in section 4 we use the new c̃l,lk , as
computed above. However, in this case, certain coefficient orderings and pairings
might increase the overall error. A pairing of fk with flk improves the cost if
and only if

||fk − ck,lkflk || ≤ ||fk|| ⇔ c̃k,lk ≤ ||fk||, (40)

which is no longer guaranteed to hold. Thus, the strategies described in section
5.1 need a minor modification: we only allow the compensation to take place
if (40) holds. Similarly, in terms of the graphical model of section 5.2, we only
allow an edge in the graph if (40) holds. Still, the optimal sequential quantizer is
the solution to the TSP problem, and the optimal tree quantizer is the solution
to the minimum spanning tree problem on that graph—which might now have
missing edges.

The main implication of missing edges is that, depending on the frame we
operate on, the graph might have disconnected components. In this case we
should solve the traveling salesman problem or the minimum spanning tree on
every component. Also, it is possible that, although we are operating on an
oversampled frame, noise shaping is not beneficial due to the constraints. The
simplest way to fix this is to always allow the choice ck,lk = 0 in the set A. This
ensures that (40) is always met, and therefore the graph stays connected. Thus,
whenever noise shaping is not beneficial, the algorithms will pick ck,lk = 0 as the
compensation coefficient, which is equivalent to no noise shaping. We should
note that the choice of the set A matters. The denser the set is, the better the
approximation of the projection. Thus the resulting error is smaller.

An interesting special case corresponds to removing the multiplication from
the feedback loop by setting A = {1}. As we mentioned before, this is a common
design choice in traditional Sigma-Delta converters. Furthermore, it is the case
examined in [1, 2], in which the issue of the optimal permutation is addressed
in terms of the frame variation. The frame variation is defined in [1] motivated
by the triangle inequality, as is the upper bound model of section 4.2. In that
work it is also shown that incorrect frame vector ordering might increase the
overall error, compared to direct coefficient quantization.

In this case the compensation is improving the cost if and only if ||fk−flk || <
||fk||. The rest of the development remains the same: we need to solve the
traveling salesman problem or the minimum spanning tree problem on a possibly
disconnected graph. In the example we present in section 7, the natural frame
ordering becomes optimal using our cost models, yielding the same results as
the frame variation criterion suggested in [1, 2]. In section 8.1 we show that
when applied to classical first order noise shaping this restriction does not affect
the optimal frame ordering and does not impact significantly the error power.

6.2 Higher Order quantization

Classical Sigma-Delta noise shaping is commonly done in multiple stages to
achieve higher-order noise shaping. Similarly noise shaping on arbitrary frame
expansions can be generalized to higher order. Unfortunately, in this case deter-
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mining the optimal ordering is not as straightforward, and we do not attempt
the full development in this paper. However, we develop the quantization strat-
egy and the error modeling for a given ordering of the coefficients.

The goal of higher order noise shaping is to compensate for quantization
of each coefficient using more than one coefficients. There are several possible
implementations of a traditional higher order Sigma-Delta quantizers. All have
a common property; the quantization error is in effect modified by a pth order
filter, typically with a transfer function of the form:

He(z) = (1 − z−1)p (41)

and equivalently an impulse response:

he[n] = δ[n] −

p
∑

i=1

ciδ[n − i]. (42)

Thus, every error coefficient ek additively contributes a term of the form ek(fk−
∑p

i=1
cifk+i) to the output error. In order to minimize the magnitude of this

contribution we need to choose the ci such that
∑p

i=1
cifk+i is the projection of

fk to the space spanned by {fk+1, . . . , fk+p}. Using (41) as the system function
is often preferred for implementation simplicity but it is not the optimal choice.
This design choice is similar to eliminating the product in figure 1. As with first
order noise shaping, it is straightforward to generalize this to arbitrary frames.

Given a frame vector ordering, we consider the quantization of coefficient
ak to âk = ak + ek. This error is to be compensated using coefficients al1 to
alp , with all the li > k. Thus, we project the vector −ekfk to the space Sk,
defined by the vectors fl1 , . . . , flp . The essential part of this development is to
determine a set of coefficients that multiply the error ek in order to project it
to the appropriate space.

To perform this projection we view the set {fl|l ∈ Sk} as the reconstruction
frame for Sk, where Sk = {l1, . . . , lp} is the set of the indices of all the vectors
that we use for compensation of coefficient ak. Ensuring that for all j ≥ k, k /∈
Sj guarantees that once a coefficient is quantized, it is not modified again.

Extending the first order quantizer notation, we denote the coefficients that
perform the projection by ck,l,Sk

. It is straightforward to show that these coef-
ficients perform a projection if and only if they satisfy the following equation:











〈fl1 , fl1〉 〈fl1 , fl2〉 · · · 〈fl1 , flp〉
〈fl2 , fl1〉 〈fl2 , flp〉 · · · 〈fl1 , flp〉

...
. . .

...
〈flp , fl1〉 〈flp , fl2〉 · · · 〈flp , flp〉





















ck,l1,Sk

ck,l2,Sk

...
ck,lp,Sk











=











〈fl1 , fk〉
〈fl2 , fk〉

...
〈flp , fk〉











. (43)

If the frame {fl|l ∈ Sk} is redundant, the coefficients are not unique. One
option for the solution above would be to use the pseudoinverse of the matrix.
This is equivalent to computing the inner product of fk with the dual frame of
{fl|l ∈ Sk} in Sk, which we denote by {φSk

l |l ∈ Sk}: ck,l,Sk
= 〈fk, φSk

l 〉. The
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projection is equal to:

PSk
(−ekfk) = −ek

∑

l∈Sk

ck,l,Sk
fl. (44)

Consistent with section 3, we change step 3 of the algorithm to:

3. Update {al|l ∈ Sk} to a′
l = al − ekck,l,Sk

, where ck,l,Sk
satisfy (43).

Similarly, the residual is −ekc̃k,Sk
rk,Sk

, where

c̃k,Sk
= ||fk −

∑

l∈Sk

ck,l,Sk
fl||, and (45)

rk,Sk
=

fk −
∑

l∈Sk
ck,l,Sk

fl

||fk −
∑

l∈Sk
ck,l,Sk

fl||
. (46)

This corresponds to expressing ekfk as the direct sum of the vectors ekc̃k,Sk
rk,Sk

⊕
ek

∑

l∈Sk
ck,l,Sfl, and compensating only for the second part of this sum. Note

that c̃k,Sk
and rk,Sk

are the same independent on whether we use the pseudoin-
verse to solve (43) or any other left inverse.

The modification to the equations for the total error and the corresponding
cost functions are straightforward:

E =

M
∑

k=1

ek c̃k,Sk
rk,Sk

(47)

E{||E||2} =
∆2

12

M
∑

k=1

c̃2
k,Sk

, and (48)

||E|| ≤
∆

2

M
∑

k=1

c̃k,Sk
. (49)

When Sk = {lk} for k < M , this collapses to a tree quantizer. Similarly, when
Sk = {k + 1}, the structure becomes a sequential quantizer. Since the tree
quantizers is a special case of the higher order quantizer, it is straightforward
to show that for a given frame vector ordering a higher order quantizer can
always achieve the cost of a tree quantizer. Note that SM is always empty, and,
therefore c̃M,SM

= ||fM ||, which is consistent with the cost analysis for the first
order quantizers.

For appropriately ordered finite frames in N dimensions, the first M −N er-
ror coefficients c̃k,Sk

can be forced to zero with an N th or higher order quantizer.
In this case, the error coefficients determining the cost of the quantizer are the
remaining N ones—the error becomes

∑M

k=M−N+1
ek c̃k,Sk

rk,Sk
, with the corre-

sponding cost functions modified accordingly. One way to achieve that function
is to use all the unquantized coefficients to compensate for the quantization of
coefficient ak by setting Sk = {(k + 1), . . . , M} and ordering the vectors such
that the last N frame vectors span the space. Another way to achieve this cost
function is discussed as an example in next section.

16



Unfortunately, the design space for higher order quantizers is quite large.
The optimal frame vector ordering and Sk selection is still an open question
and we do not attempt it in this work.

7 Experimental Results

To validate the theoretical results we presented above, in this section we consider
the same example as was included in [1, 2]. We use the tight frame consisting
of the 7th roots of unity to expand randomly selected vectors in IR2, uniformly
distributed inside the unit circle. The frame expansion is quantized using ∆ =
1/4, and the vectors are reconstructed using the corresponding synthesis frame.
The frame vectors and the coefficients relevant to quantization are given by:

fn = (cos(2πn/7), sin(2πn/7)), (50)

fn = ((2/7) cos(2πn/7), (2/7) sin(2πn/7)), (51)

ck,l = cos (2π(k − l)/7) , (52)

c̃k,l = (2/7)| sin (2π(k − l)/7) |. (53)

For this frame the natural ordering is suboptimal given the criteria we pro-
pose. An optimal ordering of the frame vectors is (f1, f4, f7, f3, f6, f2, f5), and we
refer to it as such for the remainder of this section, in contrast to the natural
frame vector ordering. A sequential quantizer with this optimal ordering meets
the lower bound for the cost under both cost functions we propose. Thus, it
is an optimal first order noise shaping quantizer for both cost functions. We
compare this strategy to the one proposed in [1, 2] and also explored as a special
case of section 6.1. Under that strategy, there is no projection performed, just
error propagation. Therefore, based on the frame variation as described in [1, 2],
the natural frame ordering is the best ordering to implement that strategy.

In the simulations, we also examine the performance of higher order quan-
tization, as described in section 6.2. Since we operate on a two dimensional
frame, a second order quantizer can perfectly compensate for the quantization
of all but the last two expansion coefficients. Therefore, all the error coefficients
of equation (47) are 0, except for the last two. A third order or higher quantizer
should not be able to improve the quantization cost. However, the ordering
of frame vectors is still important, since the angle between the last two frame
vectors to be quantized affects the error, and should be as small as possible.

To visualize the results we plot the distribution of the reconstruction error
magnitude. In figure 3(a) we consider the case of direct coefficient quantization.
Figures 3(b) and (c) correspond to noise shaping using the natural and the opti-
mal frame ordering respectively, and the method proposed in [1, 2], i.e. without
projecting the error. Figures 3(d), (e), and (f) use the projection method we
propose using the natural frame ordering, and first, second and third order pro-
jections, respectively. Finally, figures 3(g) and (h) demonstrate first and second
order noise shaping results, respectively, using projections on the optimal frame
ordering. For clarity of the legend we do not plot the third order results; they
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Figure 3: Histogram of the reconstruction error under (a) direct coefficient
quantization, (b) natural ordering and error propagation without projections,
(c) optimal ordering and error propagation without projections. In the second
row, natural ordering using projections, with (d) first, (e) second, and (f) third
order error propagation. In the third row, optimal ordering using projections,
with (g) first and (h) second order error propagation (the third order results are
similar to the second order ones but are not displayed for clarity of the legend).

are almost identical to the second order case. On all the plots we indicate with
dotted and dash-dotted lines the average and maximum reconstruction error
respectively, and with dashed and solid line the average and maximum error, as
determined using the cost functions of section 43.

The results show that the projection method results in smaller error, even
using the natural frame ordering. As expected, the results using the optimal
frame vector ordering are the best among the simulations we performed. The
simulations also confirm that in IR2, noise shaping provides no benefit beyond
second order and that the frame vector ordering affects the error even in higher
order noise shaping, as predicted by the analysis. It is evident that the upper
bound model is loose, as expected. The error average, on the other hand, is

3In some parts of the figure, the lines are out of the axis bounds. For completeness,
we list the results here: (a) Estimated Max=0.25, (b) Estimated Max=0.22, (c) Estimated
Max=0.45, Simulation Max=0.27, (d) Estimated Max=0.20.
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surprisingly close to the simulation mean, although it usually overestimates it.
Our results were similar for a variety of frame expansions on different dimen-

sions, redundancy values, vector orderings, and noise shaping orders, including
oblique bases (i.e. non-redundant frame expansions), validating the theory de-
veloped in the previous sections.

8 Extensions to Infinite Frames

When extending the results above to frames with a countably infinite numbers
of synthesis frame vectors, we let M → ∞ and modify equations (22), (28), and
(31) to reflect an error rate corresponding to average error per frame vector, or
equivalently per expansion coefficient. As M → ∞ the effect of the last term
on the error rate tends to zero. Consequently in considering the error rate we
replace equations (22), (28), and (31) by

E = lim
M→∞

1

M

M−1
∑

k=0

ek c̃k,k+1rk,k+1, (54)

E {||E||2} = lim
M→∞

1

M

∆2

12

(

M−1
∑

k=0

c̃2
k,k+1

)

, and (55)

||E|| ≤ lim
M→∞

1

M

∆

2

(

M−1
∑

k=0

c̃k,k+1

)

, (56)

respectively, where (·) denotes rate, and the frame vectors are indexed in IN.
Similar modifications are straightforward for the cases of tree4 and higher order
quantizers, and for any countably infinite indexing of the frame vectors. At
the design stage, the choice of frame should be such to ensure convergence of
the cost functions. In the remaining of this section we expand further on shift
invariant frames, where convergence of the cost functions is straightforward to
demonstrate.

8.1 Infinite Shift Invariant Frames

We define infinite shift invariant reconstruction frames as infinite frames fk for
which the inner product between frame vectors 〈fk, fl〉 is a function only of the in-
dex difference k−l. Consistent with traditional signal processing terminology we
define this as the autocorrelation of the frame: Rm = 〈fk, fk+m〉. Shift invariance
implies that the reconstruction frame is uniform, with ||fk||

2 = 〈fk, fk〉 = R0.
An example of such a frame is an LTI system: consider a signal x[n] that is

quantized to x̂[n] and filtered to produce ŷ[n] =
∑

k x̂[k]h[n − k]. We consider
the coefficients x[k] to be a frame expansion of y[n], where h[n − k] are the

4This is a slight abuse of the term, since the resulting infinite graph might have no root.
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reconstruction frame vectors fk. We rewrite the convolution equation as:

y[n] =
∑

k

x[k]h[n − k] =
∑

k

x[k]fk[n], (57)

where fk[n] = h[n − k]. Equivalently, we may consider x[n] to be quantized,
converted to continuous time impulses, and then filtered to produce ŷ(t) =
∑

k x̂[k]h(t − kT ). We desire to minimize the quantization cost after filtering,
compared to the signals y[n] =

∑

k x[k]h[n − k] and y(t) =
∑

k x[k]h(t − kT ),
assuming the cost functions we described.

For the remainder of this section we only discuss the discrete-time version
of the problem since the continuous time development is identical. The corre-
sponding frame autocorrelation functions are Rm = Rhh[m] =

∑

m h[n]h[n−m]
in the discrete-time case and Rm = Rhh(mT ) =

∫

h(t)h(t − mT )dt in the
continuous-time case. A special case of this setup is the oversampling frame,
in which h(t) or h[n] is the ideal lowpass filter used for the reconstruction, and
Rm = sinc(πm/r), where r is the oversampling ratio.

8.2 First Order Noise Shaping

Given a shift invariant frame, it is straightforward to determine the coefficients
ck,l and c̃k,l that are important for the design of a first order quantizer. These
coefficients are also shift invariant, so we denote them using cm = ck,k+m and
c̃m = c̃k,k+m. Combining equations (19) and (21) from section 3 and the defi-
nition of Rm above, we compute the relevant coefficients:

cm = c−m =
Rm

R0

(58)

c̃m = c̃−m =
√

R0(1 − c2
m) (59)

For every coefficient ak of the frame expansion and corresponding frame
vector fk, the vector that minimizes the projection error is the vector fk±mo

,
where mo > 0 minimizes c̃m, or, equivalently, maximizes |cm|, i.e. |Rm|. By
symmetry, for any such mo, −mo is also a minimum. Due to the shift invariance
of the frame, mo is the same for all frame vectors. Projecting to fk+mo

or fk−mo

generates a path with no loops, and therefore the optimal tree quantizer path,
as long as the direction is consistent for all the coefficients. When mo = 1, the
optimal tree quantizer is also an optimal sequential quantizer. The optimality
holds under both the additive noise model and the error upper bound model.

In the case of filtering, the noise shaping implementation is shown in figure
4, with Hf (z) = cmo

z−mo. It is easy to show that for the special case of the
oversampling frame mo = 1, confirming that the time sequential ordering of the
frame vectors is optimal for the given frame.

8.3 Higher Order Noise Shaping

As we discuss in section 6.2, determining the optimal ordering for higher order
quantization is not straightforward. Therefore, in this section we consider higher
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Figure 4: Noise shaping quantizer, followed by filtering

order noise shaping for the natural frame ordering, assuming that when ak is
quantized, the next p coefficients, ak+1, . . . , ak+p, are used for compensation by
updating them to

a′
k+l = ak+l − ekcl, l = 1, . . . , p. (60)

The coefficients cl project fk onto the space Sk defined by {fk+1, . . . , fk+p}.
Because of the shift invariance property, these coefficients are independent of k.
Shift invariance also simplifies equation (43):











R0 R1 · · · Rp−1

R1 R0 · · · Rp−2

...
. . .

...
Rp−1 · · · R0





















c1

c2

...
cp











=











R1

R2

...
Rp











, (61)

with Rm being the frame autocorrelation function. There are several options
for solving this equation, including the Levinson recursion.

The implementation for higher order noise shaping before filtering is shown
in figure 4, with Hf (z) =

∑p

l=1
clz

−l, where the cl solve (61). The feedback filter
implements the projection and the coefficient update described in equation (60).

For the special case of the oversampling frame, table 1 demonstrates the
benefit of adjusting the feedback loop to perform a projection. The table reports
the approximate dB gain in reconstruction error energy using the solution to
(61) compared to the classical feedback loop implied by (41). For example, for
oversampling ratios greater than 8 and third order noise shaping, there is an
8dB gain in implementing the projection method. The gain figures in the table
are calculated using the additive noise model of quantization.

r = 2 r = 4 r = 8 r = 16 r = 32 r = 64
p = 1 0.9 0.2 0.1 0.0 0.0 0.0
p = 2 4.5 3.8 3.6 3.5 3.5 3.5
p = 3 9.1 8.2 8.0 8.0 8.0 8.0
p = 4 14.0 13.1 12.9 12.8 12.8 12.8

Table 1: Gain in dB in in-band noise power comparing pth order classical noise
shaping with pth order noise shaping using projections.

The applications in this section can be extended for frames generated by
oversampled filterbanks, a case extensively studied in [3]. In that work, the
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problem is posed in terms of prediction with quantization of the prediction error.
Motivated by that work, we determined the solution to the filterbank problem
using the projective approach. Setting up and solving for the compensation
coefficients using equation (43) in section 6.2 corresponds exactly to solving
equation (21) in [3], the solution to that setup under the white noise assumption.

It is reassuring that our approach, although different from [3] generates the
same solution. Conveniently, the experimental results from that work apply in
our case as well. Our theoretical results complement [3] by providing a pro-
jective viewpoint to the problem, developing a deterministic cost function and
showing that even in the case of critically sampled biorthogonal filterbanks noise
shaping can provide improvements compared to scalar coefficient quantization.
On the other hand, it is not straightforward to use our approach to analyze and
compensate for colored additive noise, as described in [3].
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