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ABSTRACT

We present a new method for joint automatic extrinsic calibration
and sensor fusion for a multimodal sensor system comprising a LI-
DAR and an optical camera. Our approach exploits the natural align-
ment of depth and intensity edges when the calibration parameters
are correct. Thus, in contrast to a number of existing approaches, we
do not require the presence or identification of known alignment tar-
gets. On the other hand, the characteristics of each sensor modality,
such as sampling pattern and information measured, are significantly
different, making direct edge alignment difficult. To overcome this
difficulty, we jointly fuse the data and estimate the calibration param-
eters. In particular, the joint processing evaluates and optimizes both
the quality of edge alignment and the performance of the fusion algo-
rithm using a common cost function on the output. We demonstrate
accurate calibration in practical configurations in which depth mea-
surements are sparse and contain no reflectivity information. Exper-
iments on synthetic and real data obtained with a three-dimensional
LIDAR sensor demonstrate the effectiveness of our approach.

Index Terms— Multimodal calibration, depth superresolution,
intersensor registration, sensor fusion, total variation.

1. INTRODUCTION

As an increasing number of sensors and sensor modalities are used to
acquire scenes, consolidation or fusion of the sensor data is becom-
ing increasingly important. Data fusion exploits the distinct sensor
modalities to provide complementary information about the environ-
ment, overcome hardware limitations, or reduce data uncertainty due
to each individual sensor. An essential step in data fusion is extrinsic
calibration, which determines the geometric parameters of each sen-
sor, such as position and orientation, with respect to the other ones.
During fusion, the calibration parameters are used to compute the
geometric transformation that maps the output of each sensor to a
common frame of reference.

The fusion problem we consider in this paper is depth su-
perresolution: low-resolution depth data from a LIDAR sensor is
fused with an image from an optical camera to produce a higher-
resolution depth image [1-4]. In particular, we are interested in
calibrating and fusing the output of a LIDAR sensor that provides a
three-dimensional (3D) point-cloud of depth measurements with an
optical camera observing the same scene, as illustrated in Figure 1.

The key insight in our paper is that fusion and calibration are
complementary processes and improvements in one can be used to
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Fig. 1. High-resolution depth image obtained after calibrating and
fusing intensity image with a sparse depth-map. The highlights in
the figure show the biker.

boost the performance of the other. Thus, a joint calibration and fu-
sion method significantly improves the final output. In contrast to
existing approaches, which typically address either calibration or fu-
sion, but not both, the joint processing we describe works towards a
common objective: improving the final output of the pipeline. This
objective is reached by jointly optimizing over the calibration pa-
rameters and the fusion output, using the appropriate cost function
in each case.

In the next section we present a brief background and discuss in
detail the key elements of our approach, especially in relation to ex-
isting approaches. Section 3 formulates and develops our approach,
including the joint optimization algorithm. Section 4 presents exper-
imental results on real and synthetic data validating our approach.
Section 5 concludes and discusses our findings.

2. BACKGROUND

Most calibration approaches, including the one described in this pa-
per, are fundamentally based in identifying and matching features
acquired from the two sensors and determining the calibration pa-
rameters, i.e., a common geometric frame of reference, using those
features. The most common approaches require the existence of
known targets in the scene, which are used for feature matching.
These targets are typically placed in the scene during a calibration
stage and their signatures in the acquired scenes are used to estab-
lish correspondences across modalities. For example, [5] exploits a
planar checkerboard pattern and uses nonlinear least squares opti-
mization to calibrate a 2D laser scanner with a single optical cam-
era. Follow up work extended and refined this approach [6—8], while
others considered using other types of targets such as right-angled
triangles [9], circles [10], or white-to-black transitions [11].
Unfortunately, such target-based methods are typically per-
formed offline, separately from subsequent processing, and cannot
correct calibration errors that occur during the operation of the sen-



Fig. 2. Normalized gradient magnitudes at the correct calibration
parameters corresponding to the (a) intensity and (b) fused depth
images from the KITTI dataset [17]. There is a significant correla-
tion between the edge images at the correct calibration parameters.
Result of estimating a (d) high-resolution depth image from the (c)
projected depth point-cloud from a single frame.

sors due to drift caused, for example, by vibration or due to changes
in the sensor configuration. Furthermore, these methods become
impractical in mass-produced systems, especially if manufacturing
tolerances result in variations of the calibration parameters among
systems to affect further processing and data fusion. In such cases,
these method would require individual calibration of each system,
increasing the manufacturing cost.

Accordingly, more recent work attempts automatic calibration
using features present in the observed scene, without dedicated tar-
gets. For example, in [12] the calibration parameters are selected to
minimize the x? distance between LIDAR reflectivity and camera
image intensity. More recently, in [13] the calibration algorithm de-
termines parameters that maximize the mutual information between
LIDAR reflectivity and camera image intensity. If reflectivity values
are not available or not reliable from the LIDAR, it is also possible to
directly correlate the depth discontinuity at each LIDAR point with
edges in the intensity image [14, 15] or use the mutual information
between the signals [16].

The main drawback of existing automated calibration methods
that do not require a target is that, quite often, the sampling density
and geometry in one modality do not match the sampling density and
geometry in the other, thus making comparisons difficult. For ex-
ample, camera images typically comprise a dense two dimensional
array of pixel values. In contrast, LIDAR data are typically repre-
sented as a sparse point cloud, heavily subsampled in the vertical
direction, and often do not include reflectivity values. Identifying,
for example, edges in the latter is not straightforward.

In this paper, we propose an alternative approach that can cal-
ibrate the sensors while simultaneously superresolving the sparse
depth from the LIDAR. Specifically, we design a cost functional pe-
nalizing the misalignment between the high-resolution depth and in-
tensity images and propose a simulated-annealing-based optimiza-
tion algorithm for finding the optimal calibration parameters. Our
approach is based on the observation that the depth and intensity
edges are more likely to be aligned at the correct calibration param-
eters (see Figure 2). The high-resolution depth image is obtained by
solving total-variation (TV) regularized least squares problem [18].
We experimentally demonstrate the ability of our method to accu-
rately calibrate the sensors without additional laser reflectivity infor-
mation on both simulated and experimentally measured data in the

Algorithm 1 Joint calibration and sensor fusion
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cset: <1
: repeat
T; + temperature{T}_1}
Pick a random neighbour: 8" < neighbour{6"~'}
Update high-resolution depth ¢g+ by solving (8).
it P (7(0") > F(0'"),T) > rand(0,1)
or F(0') < F(O'™1)

0« 0 and$ — Pot
: until: stoppingAcriterion
. return: 6 and )

—_
7Y X AN R

—_

context of autonomous vehicles. We believe that our method could
enhance the applicability of sensor fusion algorithms that rely on
accurate multimodal calibration of sensors.

3. PROPOSED APPROACH

3.1. Problem Formulation

Extrinsic calibration of a LIDAR with a camera attempts to deter-
mine a perspective projection of the frame of reference of one system
to the frame of reference of the other. The formulation we consider
in this paper considers a transformation with 6 degrees of freedom
(DOF): three angle rotations (roll, pitch and yaw) and three trans-
lations (along the z, y and z axes). We compactly represent those
using the respective parameters @ = (G, Opich; Oyaw, O, 0y, 62).

For convenience, the global frame of reference typically coin-
cides with the frame of reference of one of the sensor. In our formu-
lation, the camera geometry provides the global frame of reference.
Of course, once the calibration is known, the geometry can be triv-
ially mapped to any frame of reference, including that of the LIDAR.
We denote the recorder camera image in its frame of reference using
u € RVe=xNy , where N, and N, are the number of horizontal and
vertical pixels respectively, for a total of N = N, N, pixels. Note
that in the remainder of this paper we often use n € {1,..., N} to
index the elements of u and other similarly sized matrices, essen-
tially vectorizing them.

LIDAR data are typically represented as a point cloud, i.e., a
set of (z,y, z) Cartesian coordinates from which a LIDAR pulse
reflection has been recorded. We denote the set of those points us-
ing ¥ € RM*3 where M is the number of recorded reflections
and each point coordinates are represented in a row of . Often LI-
DAR systems represent data in a polar coordinate system instead of
a cartesian one. Transformation of one to the other is trivial; we use
Cartesian coordinates in this paper.

We should also note that LIDAR systems will only record reflec-
tions they detected. Lack of points along a particular direction may
mean either that there is no object present along that direction, or
that the LIDAR system never illuminated that direction. A number
of LIDAR products only return the reflections recorded, also known
as hits and not the misses, i.e., the pulses that were never reflected.
Our development does not assume a particular LIDAR scanning ge-
ometry or schedule, and, therefore, we assume that the empty space
has just not been illuminated. If information about misses is avail-
able, it can be easily used to enhance performance.

Given transformation parameters @, we can map the 3-D LIDAR
point cloud onto the reference 2D image plane of the camera using a
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Fig. 3. Calibration experiment on the Middlebury dataset [19]: (a)
evolution of the cost function; (b) evolution of the error between the
true and estimated parameters; (c) intensity image; (d) sparse depth
measurements; (e) fused depth image.

linear 3D rigid body transformation transformation.

P = (| o fH’f:DT 1)

where 7 denotes the transpose of 1, R is the rotation matrix from
3D rotation group SO(3), characterized by the roll, pitch and yaw
angles, and t € R? is specified by the translations 6, 6, and 0.

The goal of automatic calibration is to estimate the correct trans-
£ormation parameters 6 directly from the camera and LIDAR data
0= fcalibrauon(u,’l/))-

The LIDAR data, in contrast to the camera image, significantly
subsample the observed scene. Given calibration parameters, the
goal of fusion in the context of this work is to estimate a high-
resolution depth map ¢g € R™=*Nv  where each element of ¢ indi-
cates the depth of the corresponding pixel with respect to the camera

frame of reference (Aﬁ = fusin(1,%,8).

3.2. Automatic calibration

To estimate the calibration parameters, our approach exploits the
output of the fusion process. Specifically, we use ¢g = frusin(u, 2, 6)
to compactly denote the high-resolution depth image estimated given
the calibration parameters 6. The calibration parameters are esti-
mated by minimizing a cost function on ¢ which penalizes miss-
alignments between the gradients of the projected high-resolution
depth map and the intensity image

0= argmin {F(0)}, 2
6cO
where,
Z 3
ke {zy} N’“ ¢‘9

In particular, the numerator Ay (¢bg ), measures the weighted ¢; total
variation (TV) of the high-resolution depth image, evaluated only at

the points in which the LIDAR performs real measurements.

Ai(de) = Y winl[Vidolul, )

neNg

where k is the horizontal or vertical direction, x or y, Vy is the
gradient operating on ¢ along direction k. The weights wy ,, are
specified using the camera image, wg,, = exp(—y |[[Vru]x|), thus
promoting edge alignment between the camera image and the high-
resolution depth map, as controlled by the fixed parameter v > 0.

The set 9 # () denotes the subset of points where we have
obtained depth measurements from the LIDAR. Restricting the cost
to those points ensures that we consider only the regions where the
depth image is reliable. Note that, even though the function is only
computed in those points, computing the high-resolution image is
required in order to be able to calculate the vertical and horizontal
gradients at these points.

Given an edge in the intensity image, a large -y does not penalize
a corresponding edge in the depth map. Thus, only edges in the depth
map that do not have corresponding edges in the intensity map, i,e,
not properly aligned, are penalized. A small v, on the other hand,
reduces the effect of the intensity image, thus penalizing edges in
the depth map similarly, irrespective on whether the intensity map
has a corresponding edge.

The denominator is a necessary normalization factor that takes
into account the difference in number of points in {2y that are in-
cluded in the evaluation given different parameter sets 0
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3.3. Sensor Fusion

Given a fixed parameter vector 8, fusion estimates ao using the im-
age u and the projection of the LIDAR data to the camera image
frame P ().

Our approach uses an /2 penalty to promote consistency of the
resulting depth map with the projected data. In other words, we
measure data fidelity using

D(g) = | [Po{h} — Hol?, ©

where H : RN — R™ is a masking operator which selects only the
indices where we have data in the projection Pg{t)}.

Since the depth data are significantly subsampled, we regularize
the problem using the weighted isotropic total variation (TV) [18] of
the depth

N
$) = > wall[Velulles, @)

which promotes sharper edges, according to the weights w,, [20].
The resulting fusion algorithm minimizes the following opti-
mization

$o = argmin{D(@) + \R(#)}, ®)

where & C RY is used to enforce certain physical constraints on
the depth, such as non-negativity, and the fixed parameter A > 0
controls the amount of regularization.

The fusion algorithm exploits the camera data to improve the fu-
sion output through the weights w,,. Specifically, the weights can be
chosen as a function of the gradient of the image at each pixel, such
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Fig. 4. Calibration experiments on the KITTI dataset: (a) evolution of the cost function; (b) evolution of the error between the true and
estimated parameters; (c) projected depth at the initial calibration parameters; (d) projected depth at the final calibration parameters.

that corresponding edges in the depth image are not penalized sig-
nificantly [21]. If the data are not properly calibrated, this weighting
may introduce spurious edges and further confuse subsequent cali-
bration. Thus, while calibration is performed the weights are chosen
as w, = 1. Once the calibration parameters are estimated, a final
fusion step is performed w,, = exp(—7||[Vx]||¢,) for some con-
stant 7 > 0. Figure 2 illustrates the result of intensity and depth
fusion at the correct calibration parameters 6.

3.4. Algorithm

Since the cost functional (3) is non-convex, we rely on a simu-
lated annealing based approach to find the calibration parameters
and solve (2). The overall method is summarized in Algorithm 1.
The high-resolution depth in step 6 of the algorithm is obtained by
iteratively solving (8) with a fast iterative shrinkage/thresholding al-
gorithm (FISTA) [22]. We initialize FISTA with the result of a linear
interpolator, which allows it to solve (8) within very few iterations.

4. EXPERIMENTS

To validate our algorithm we use the Middlebury dataset [19] which
provides dense 2D depth-maps and corresponding 2D intensity im-
ages. As shown in Figure 3, we first subsample the dense depth-map
by taking only 2% of the total number of pixels. To test automatic
calibration, this subsampled version is first randomly translated and
rotated before the algorithm is used for calibration, i.e., to determine
and undo the translation and rotation, and fusion.

The results of applying algorithm 1 to this dataset are summa-
rized in Figure 3. Figure 3(c) and 3(e) show the intensity image and
the high-resolution reconstruction of depth, respectively. Figure 3(a)
and 3(b) summarizes the progression of the objective function and
of the ¢5 error of the calibration parameters with respect to the true
parameters as a function of iterations. Note that our approach overall
performed pretty well for all the images in this dataset.

For additional validation, we test the algorithm on the KITTI
dataset [17]. This dataset contains intensity images u and 3D point
clouds % from urban and rural scenarios. In addition, the dataset pro-
vides extrinsic calibration parameters @ that can be used to verify the
ground truth and measure the error of our algorithms. The method

used to generate these calibration parameters is a target based auto-
matic calibration which is run prior to acquisition.

In the experiments, we initialize the calibration algorithm using
a random perturbation added to the ground truth calibration param-
eters, as these are provided by the dataset. The perturbation is ran-
domly generated using a uniform distribution between =+ 10 degrees
in the case of the rotational parameters, =+ 70 pixels in the case of
the 6., 0, translations and =+ 10 pixels in the case of 6, translation.

Our initialization simulates a coarse manual initialization with
significant tolerance and should be sufficient to illustrate the effec-
tiveness of our approach. LIDAR optical cameras are often mounted
close-by with small tolerances. Furthermore, if calibration is re-
quired, it is usually to update an existing calibration due to small
change in the orientation of the sensors.

An example of the initial projection of the point-cloud in one of
our experiments is shown in Figure 4(c). This initial projection was
used as an input along with %) and X on our calibration algorithm.
The progression of (3) and of the /> error between the solution and
the ground truth parameters provided in KITTI is shown as a func-
tion of iterations in Figures 4(a) and 4(b), respectively. Note that
both the objective function and ¢ error significantly decrease as a
function of iterations. Figure 4(d) illustrates the projection at the
calibration parameters 6 found by minimizing (3).

5. CONCLUSION AND DISCUSSION

Our paper presents a joint automatic calibration and fusion approach
for multimodal sensors comprising of 2D/3D LIDAR and optical
cameras. This approach is based on the fundamental realization that
subsequent processing steps, such as sensor fusion, can be used to
inform and significantly improve the calibration step in a signal pro-
cessing pipeline.

Our approach is based on implicitly matching and preserving
the edges present in the two modalities using a weighted total vari-
ation norm. This norm is able to exploit the additional information
extracted by the fusion process and aid calibration but, also, inform
the fusion process in generating a high-fidelity depth image. Our ex-
perimental results confirm our intuition and validate our approach.
Of course, this approach is immediately applicable to calibration of
other imaging modalities, both 2D and 3D.
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