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Compression of multispectal images is of great importance in an
environment where resources such as computational power and memory
are scarce. To that end, we propose a new extremely low-complexity
encoding approach for compression of multispectral images, that shifts
the complexity to the decoding. Our method combines principles from
compressed sensing and distributed source coding. Specifically, the
encoder compressively measures blocks of the band of interest and
uses syndrome coding to encode the bitplanes of the measurements.
The decoder has access to side information, which is used to predict
the bitplanes and to decode them. The side information is also used to
guide the reconstruction of the image from the decoded measurements.
Our experimental results demonstrate significant improvement in the
rate-distortion trade-off when compared to coding schemes with similar
complexity.

I. INTRODUCTION

Recent advances in remote sensing technology have significantly
increased imaging resolution and, consequently, the amount of raw
data that needs to be transmitted. As a result, there is renewed
interest in lightweight data compression algorithms, e.g., for airborne
platforms. In such platforms, conventional compression approaches
based on transform coding, such as JPEG and JPEG2000, may not
be suitable. Instead it is necessary to develop rate-efficient low-
complexity encoders, shifting complexity to the decoder.

In this work we focus on high-resolution multispectal images,
typically comprised of four to eight spectral bands. Inspired by [1]–
[4] we present a lightweight distributed coding approach that exploits
structural correlations among bands. Specifically, we assume that
one band is available as side information at the decoder, along with
statistical information that enable coarse prediction of the other bands.

Our approach uniquely and efficiently combines recently devel-
oped quantized compressed sensing (CS) and randomized sampling
techniques with conventional distributed coding, to enable an ac-
curate control of the prediction error and the compression rate. In
addition, our approach exploits structural correlations between bands,
both in decoding—by forming an accurate prediction from the side
information—and in the CS-based reconstruction—by influencing
the weights in the optimization. Thus, it can exploit more complex
structural models of the image, beyond second order statistics, such
as sparsity and structured sparsity.

In particular, encoding first linearly measures the signal using a
randomized measurement matrix. The measurements are quantized
and separated into bitplanes from the least to the most significant.
Given that side information is available at the decoder, each bitplane
is separately compressed by computing and transmitting a syndrome
at the appropriate rate. The decoder decodes each bitplane iteratively,
starting from the least significant and iterating to the most significant.
At each iteration, a prediction of the bitplane is formed using the
signal prediction and the bitplanes decoded in the previous iterations.
The syndromes are used to correct the bitplane prediction, to recover

The first author performed this work while at MERL.

the quantized measurements. In turn, these are used to reconstruct the
signal using a sparse optimization informed by the side information.

Our method can be considered a significant generalization of [3],
exhibiting strong theoretical connections with universal quantiza-
tion [5], [6]. In comparison to [3], it exhibits lower complexity, while
experimentally delivering up to 6dB improvement in peak signal-
to-noise ratio (PSNR) for the same encoding rate. Furthermore, it
enables better theoretical understanding of the coding rate required.
This work also raises several interesting theoretical questions regard-
ing the redundancy of compressive measurements, and the optimal
way to exploit it.

The next section provides some background on CS and distributed
coding. Section III describes the details of the proposed approach.
Simulation results validating our approach are presented in Section
IV. Finally, Section V discusses our results and concludes the paper.

II. BACKGROUND

A. Compressed Sensing and Universal Quantization

The development of CS in the last decade has demonstrated that
it is possible to undersample signals significantly and still be able to
reconstruct them, as long as the reconstruction exploits information
on the signal structure [7], [8]. Typically, the structure exploited
is sparsity in some domain, such as a basis transform or in the
signal derivative. To ensure information is preserved, incoherent
linear measurements of the signal are obtained, typically randomized,
of the form y = Ax, where y is the measurements vector, x is the
signal of interest, and A is the measurement matrix.

The signal can be recovered by solving a sparse inverse problem.
One of the most useful sparsity-promoting metrics in imaging is the
total variation norm, which quantifies the sparsity of the image gradi-
ent. Additional prior information about the image can be incorporated
by adjusting the weights of a weighted total variation (WTV) norm.
The isotropic two-dimensional (2D) WTV is defined as

WTV (X) =
∑

s,t

√
W x
s,t(Xs,t −Xs−1,t)2 +W y

s,t(Xs,t −Xs,t−1)2, (1)

where X is a 2D image, W x and W y are 2D sets of weights,
and (s, t) are image coordinates. Larger weights penalize edges
more in the respective location and direction, while smaller weights
reduce their significance. In abuse of notation, we use X and x
interchangeably to refer to the same signal. The former denotes the
signal arranged as an N ×N 2D image, while the latter as a column
vector of length n = N ×N .

One of the most common approaches to reconstruct the image is
to solve the following regularized convex optimization:

x̂ = arg min
x
‖y −Ax‖22 + λWTV (x), (2)

where λ is an appropriately chosen regularization parameter. There
are several heuristics to set the weights in WTV (·). The simple
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Fig. 1. System diagram for the proposed compression-decompression method.

approach of switching between a large and a small weight, depending
on the prior information, has been shown to perform well [9].

It should be noted that, despite the reduced number of mea-
surements, when quantization and bit rate are taken into account,
quantized CS does not produce as good a compression as transform
coding [10]. To improve performance, the approach we use here
combines CS with distributed coding, enabling more efficient use
of the available bitrate.

B. Distributed Source Coding

Distributed source coding, first developed in [11], is a source cod-
ing approach that exploits side information available at the decoder
to reduce the rate required for reliable transmission. Remarkably, the
encoder can optimally encode the signal without requiring access to
the side information.

In the setting we encounter in this paper, a sequence of bits q ∈ Fm2
should be encoded and transmitted, knowing that the decoder has
access to a prediction q̂ = q + e of the same sequence. In the
prediction, each predicted bit may be incorrect with some probability
p, i.e., the typical error vector e has Hamming weight pm. To encode
q, the encoder computes a syndrome using a linear code s = Hq,
where H ∈ FM×m2 is a parity check matrix [12]–[15].

Given q̂ and s, the decoder finds the error vector e∗ with the
minimum Hamming weight such that s = H(q̂ + e∗) and estimates
q as q = q̂+e∗. Successful decoding implies that q = q, i.e., all the
errors have been corrected. The probability of an error in decoding
can be made arbitrarily small as m increases, as long as the code used
to generate the syndrome has rate r < C(p) = 1 − HB(p), where
HB(p) = −p log2(p)− (1− p) log2(1− p) is the binary entropy for
probability p and C(·) is the capacity of the corresponding binary
symmetric channel. Equivalently, the syndrome needs to have length
M > m(1−C(p)) = mHB(p). Of course, for finite blocklengths a
slightly lower rate is necessary to guarantee reliable decoding.

In this work we use the most popular capacity approaching class
of codes based on low-density parity-check (LDPC). The LDPC
parity check matrix H is sparse, making it efficient to store on
board a satellite. They also allow computationally efficient decoding
based on belief propagation. To design the parity check matrix of
irregular LDPC codes, we use the Pareto optimization approach
proposed in [16], where the highest coding gain and lowest decoding
complexity are achieved at the same time by analyzing the extrinsic
information transfer (EXIT) [17] trajectory across decoding iterations.
We consider check-concentrated triple-variable-degree LDPC codes
for designing the degree distribution, while the girth is maximized in
a greedy fashion by means of progressive-edge-growth (PEG) [18].

III. PROPOSED APPROACH

A. Overview

Our approach relies on compressively measuring the band to be
encoded, henceforth denoted as xb ∈ Rn, using a randomized
measurement matrix, and uniformly quantizing the measurements.
We assume that the decoder has access to a reference band as side
information, denoted as xref ∈ Rn, as well as sufficient prediction
information to obtain a good prediction x̂b ∈ Rn of xb.

A system diagram is presented in Fig. 1. In this paper we sidestep
the question of how the reference band is coded. For example, a
conventional lossy or lossless compression method might be used.
We assume that such a reference band is available at the decoder for
simple analysis. Furthermore, we assume that the decoder has access
to prediction information that help the prediction of the encoded band
from the reference band. In particular, as shown in the figure, we
assume that the encoder, which has access to both bands, encodes
and transmits linear prediction coefficients, i.e., means, variances
and covariances, to the decoder. To manage complexity on-board the
satellite, the image is segmented in blocks of size n = N ×N . Each
block can be treated separately, both at encoding and at decoding,
enabling massive parallelization of both steps.

A key realization, formalized and quantified in Thm. 1 in
Sec. III-B, is that the quantized measurements of the encoded band
can be predicted from the measurements of the image prediction. In
particular, while the least significant bits of the measurements will be
difficult to predict, as the significance of the bits increases, prediction
becomes more reliable. Furthermore, if the first k least significant bit
levels of the measurements are known or have been reliably decoded
at the decoder, then the prediction of the (k + 1)th least significant
bit level becomes easier. In other words, we can encode each bitplane
with a distributed source code at a rate appropriate for the reliability
of the prediction. The decoder iteratively decodes each bitplane, from
the least significant to the most significant, updating the prediction
of the not-yet-decoded bitplanes as each bitplane is decoded.

One issue with commonly used distributed coding schemes is that
it is difficult to decide what code rate to use. In particular, it is often
not straightforward to quantify how prediction quality affects the
encoding of the signal and the reliability of each bit of the encoding.
Conveniently in our case, Thm. 1 exactly quantifies the probability
that the (k+ 1)th LSB will be different between prediction and true
measurement as a function of the prediction error, and assuming that
the first k LSBs have been correctly decoded. Thus, the rate required
for successful decoding of the code can be exactly computed if the
prediction quality is known.



B. Coding

For each block, the band to be encoded, xb, is measured, scaled,
and dithered according to

y =
1

∆
Axb + w, (3)

where y ∈ Rm are the measurements, A ∈ Rm×n is a measurement
operator, ∆ ∈ R a scaling parameter, and w ∈ Rm is a dither vector
with i.i.d. elements drawn uniformly in [0, 1). Typically, although
not necessarily, the operator A is compressive, i.e., it reduces the
dimensionality at the output to m < n.

The measurements are quantized element-wise, using a scalar
uniform integer quantizer Q(·). The quantizer rounds its input to
the nearest integer, using B bits, producing quantized measurements
q = Q(y) ∈ Zm. We assume that the quantizer does not saturate,
i.e., that B is selected sufficiently large. It should be noted that
changing the scalar parameter ∆ in (3) is equivalent to using unscaled
measurements and setting the quantization interval to ∆.

In the remainder of this paper we use q(k), k = 1, . . . , B to denote
each bitplane of the measurement, from least significant to most
significant. In other words, q(k) ∈ Fm2 is a binary vector containing
the kth significant bit of all quantized measurements q, with k = 1
being the LSB and k = B the MSB.

Having access to the corresponding block in the reference band,
xref , the encoder also computes prediction statistics to be transmitted.
These will enable linear prediction of xb from xref at the decoder.
In particular, the following statistics are computed and transmitted
separately

µb =
1

n

n∑

i=1

(xb)i, (4)

σ2
b =

1

n

n∑

i=1

((xb)i − µb)2 , (5)

σref,b =
1

n

n∑

i=1

((xref)i − µref) ((xb)i − µb) . (6)

The overhead of this transmission is small. For example, assuming
8 bits per parameter, blocks of size 64 × 64, each band requires 3
parameters, totaling 24 bits, i.e., 0.0059 bits per pixel (bpp). Note
that the mean and variance of the reference band can be computed
at the decoder and do not need to be transmitted.

The linear prediction parameters also inform the encoder of the
prediction error, which is equal to

ε2 = ‖xb − x̂b‖2 = nσ2
ε = n

(
σ2
b −

σ2
ref,b

σ2
ref

)
, (7)

where x̂b is the prediction. For each bitplane k, the linear prediction
error also quantifies the probability that a measurement bit will be
different when comparing the prediction to the correct measurements,
according to the following theorem.

Theorem 1: Consider a signal xb measured using a random matrix
A with i.i.d. N (0, σ2) entries according to (3). Also consider its
prediction x̂b with prediction error ε = ‖xb − x̂b‖ and assume that
bitplanes k = 1, . . . ,K−1 have been correctly decoded. Then q(K)

can be estimated with probability of bit error equal to

pK =
1

2
−

+∞∑

l=1

e
− 1

2

(
πσεl

2K−1∆

)2

sinc

(
l

2

)
sinc

(
l

2K

)
. (8)

We defer the proof to an extended version of this paper. Fur-
thermore, although it is straightforward to bound (8) above and

Fig. 2. Probability pK of bit error in decoding as a function of the prediction
error, assuming K − 1 bitplanes have been correctly decoded.

below using the first few terms of the summation, we omit those
bounds, and discussion thereof, in the interest of space. Still, (8)
is straightforward to compute to an arbitrary precision, even when
computation is scarce. It can also be approximated well as a piecewise
linear function.

Figure 2 shows how the probability behaves as a function of the
prediction error, for different values of K − 1 correctly decoded
bitplanes. As evident in the figure, the range of errors for which
the bitplane prediction is accurate increases rapidly with K, making
syndrome coding unnecessary for large K.

For each bitplane q(k), and given the prediction error (7), the
encoder uses (8) to compute the probability pk that each bit will
be flipped in the bitplane prediction. The bitplane must therefore be
encoded via the appropriately chosen parity check matrix H(k) as
the syndrome sk = H(k)q(k) of length MS > mHB(pk) bits, which
is transmitted to the receiver.

When implementing the encoder, there are several practical con-
siderations. In particular, a truly Gaussian matrix A is not easy to
implement because of storage and computation requirements, espe-
cially since the encoder is typically implemented in finite-precision
arithmetic. In practice, similar to [3], [4], we use a binary ±1 matrix,
implemented by randomly permuting the signal, taking the Hadamard
transform and randomly subsampling the output. Thus, we have a
O(n logn) complexity operator, instead of O(nm), which further
requires only O(n) storage, instead of O(nm). In our experiments,
the behavior of this ensemble is similar to the behavior of a Gaussian
ensemble with respect to the probability of error in Thm. 1.

In addition, due to the complexity of computing codes of arbitrary
rates on the fly, we pre-compute and store codes for a fixed number
of rates in the range r = 0.05, 0.1, . . . , 0.95. Note that rate 1, i.e.,
pk = 0 means that there is no need to send any data since there is no
decoding error. In contrast, for pk = 0.5 we need a rate 0 code, i.e.,
the syndrome will have the same length as the bits to be encoded. In
that case, instead of computing a syndrome we simply transmit the
entire bitplane q(k) as is.

Another practical consideration is the effect of finite blocklength,
which limits the rate of the code we use to be strictly below
capacity. In practice, after computing the required rate for the code,
instead of selecting the next lower rate code from the available rates,
we heuristically select a code rate at least 0.1 less. While more
sophisticated approaches could be used to select the rate, we found
that their benefit is minor in terms of the compression rate achieved,
while their implementation complexity is significant.

C. Decoding

Using the side information and the reference band, the decoder
first computes an estimate x̂b using a simple linear minimum mean
squared error (LMSSE) estimator

x̂b =
σb,ref

σ2
ref

(xref − µref) + µb. (9)



The estimate is measured, scaled and dithered, as with the original
data in (3), to produce predictions of the measurements ŷ. The
measurement predictions will be used to decode the syndromes and
to recover the quantized measurements q exactly.

The quantized measurements are iteratively recovered starting with
the least significant bitplane k = 1. At iteration k, a new estimate
of the quantized measurements q̂ is computed, incorporating all the
new information from the previous iterations. From that estimate,
the kth bitplane, q̂(k), is extracted and corrected using the syndrome
sk to recover the corrected bitplane q̃(k). If the syndrome has been
properly designed at the correct rate, decoding is successful with high
probability and q̃(k) = q(k).

In particular, for k = 1, the predicted measurements are quantized
to q̂. Their least significant bitplane q̂(1) is the prediction corrected
using by the syndrome s1. For k > 1, assuming k−1 bitplanes have
been successfully decoded, q̂ is estimated by selecting the uniform
quantization interval consistent with the decoded k−1 bitplanes and
closest to the prediction ŷ. Having correctly decoded the first k − 1
bitplanes is equivalent to the signal being encoded with a (k−1)-bit
universal quantizer. Thus, recovering q̂ is the same as the decoding
performed in [3].

An example of k−1 = 2 is shown in Fig. 3. The left hand side of
the figure plots a 2-bit universal quantizer, equivalent to a uniform
scalar quantizer with all but the 2 least significant bits dropped. The
right hand side shows the corresponding 3-bit uniform quantizer used
to produce q. In this example, the two least significant bits decode
to the universal quantization value of 1, which could correspond to
qi = 1 or −3 in the uniform quantizer. However, the prediction of the
measurements ŷi is closer to the interval corresponding to qi = −3,
and, therefore q̃i = −3 is recovered.

Formally, let a temporary estimate of the yet undecoded bits be
q = Q(ŷ)(k:B). Then the estimate for qi is

q̂i = 2k(qi + c) +
(
q̃(1:k−1)

)
i
, (10)

where c ∈ {−1, 0, 1} is chosen to minimize the distance of q̂i to ŷi.
Finally, the kth bitplane q̂(k) is corrected by decoding the syn-

drome to produce the corrected estimate q̂(k). As long as the
syndrome satisfies the rate conditions of Thm. 1, the decoding is
reliable. Decoding continues iteratively until all B bitplanes have
been decoded. After decoding each bitplane, the next bitplanes be-
come increasingly reliable. At some point in the decoding process the
remaining bitplanes are sufficiently reliable that q̂ will stop changing
from iteration to iteration, and decoding can stop early. Note that this
point is already known at the transmitter, because of Thm. 1. At this
point no additional syndromes are transmitted. In our experiments,
with the parameters used, typically 1 or 2 least significant bitplanes
were transmitted as is, i.e., with a rate 0 syndrome code. A maximum
of 3 additional bitplanes were transmitted for which syndromes were
required, i.e., for which the rate was greater than 0 but less than 1.

Once all bitplanes have been successfully decoded, the quantized
measurements q̃ are used to reconstruct the image by solving

x̃b = arg min
x

∥∥q̃− 1

∆
Ax−w

∥∥2
2

+ λWTV (x), (11)

where λ = 0.1 was tuned experimentally using a small part of the
data. Several approaches exist to solve (11); we use the fast iterative
shrinkage thresholding algorithm (FISTA)-based approach in [19].

The optimization in (11) should be guided by the reference image
since the two images exhibit the same structure. Specifically, the two
spectral bands image the same area and, therefore, we expect edges
to be colocated. Thus, the gradient in the reference image Xref can
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Fig. 3. Minimum distance decoding of a quantization point using the
prediction measurement.

be used to set the weights in a WTV reconstruction, as described in
Sec. II-A. In particular, given Xref , we set the weights in (1) as

W x
s,t =

{
0.2, if |Xref

s,t −Xref
s−1,t| > t,

1, otherwise,
(12)

W y
s,t =

{
0.2, if |Xref

s,t −Xref
s,t−1| > t,

1, otherwise,
(13)

where t is an appropriate threshold chosen to qualify which gradients
are considered significant. This choice of weights is common in a
number of weighted sparsity measures. It has been shown in practice
to have similar performance to more complicated schemes [9].

IV. RESULTS

To validate our approach we used [3] as our benchmark on
multispectral images acquired by the AVNIR-2 instrument of the
ALOS satellite [20]. Specifically, we performed experiments on a
4-band, 512×512 crop of an image, compressed at 2bpp. The image
was compressed using non-overlapping blocks of size n = N×N =
64 × 64. A total of m = 4000 measurements of each block were
obtained for each spectral band. Each measurement was quantized
to B = 10 bits. Similarly to [3], the blue band was chosen as the
reference, xref , to compress the other three bands, green, red and
infrared.

The choice of the scaling parameter ∆ affects the reconstruction
quality and the bit budget needed to encode an image band. In
particular, reducing ∆ results in finer measurement quantization
which translates to improved reconstruction PSNR at the cost of
higher encoding rate. In our experiments, we considered two sce-
narios. First, we kept ∆ equal among all three bands, ensuring
similar reconstruction quality but at variable rate for each band.
Second, we set ∆ such that all bands use the same rate but have
different reconstruction quality. It is expected that the easier to predict
bands will consume lower rate in the first scenario or exhibit better
reconstruction quality in the second. For the benchmark approach [3],
the only available results use the same rate for each band.

The results are tabulated in Table I. The top row lists the perfor-
mance of simple linear prediction using the prediction parameters
in the side information, quantifying the similarity of each band to
the reference, blue band. As expected, the green band is easier to
linearly predict from the blue, followed by the red band and then the
infrared band. This also corresponds to the spectral distance of the
three bands from the blue one.

As evident in the table, our approach significantly outperforms [3],
especially in the more difficult to predict cases. When coding using
the same rate of 2bpp for each band, our approach exhibits a 4–5dB
improvement across all bands, as can be deduced from the third row
of the table. However, similar to [3], and as expected, the quality
decreases as the prediction performance decreases, i.e., for the red



TABLE I
DECODING PSNR AT 2 BPP (512× 512 IMAGE CROP)

PSNR (green) (dB) PSNR (red) (dB) PSNR (infrared) (dB) BPP (green) BPP (red) BPP (infrared) BPP (overall)
Linear prediction 33.46 28.53 27.52 — — — —
Benchmark [3] 37.79 32.76 34.24 2.00 2.00 2.00 2.00

∆green = 7.5; ∆red = 13.1; ∆infrared = 13.35 41.70 37.65 37.98 2.00 2.01 2.04 2.02
∆green = ∆red = ∆infrared = 11 39.13 38.71 39.11 1.51 2.21 2.30 2.01

TABLE II
DECODING PSNR AT 1.68 BPP (FULL 7040× 7936 IMAGE)

PSNR (green) (dB) PSNR (red) (dB) PSNR (infrared) (dB) BPP (green) BPP (red) BPP (infrared) BPP (overall)
Linear prediction 37.05 31.67 27.32 — — — —
Benchmark [3] 39.06 37.60 35.80 — — — 1.68

∆green = ∆red = ∆infrared = 10.35 40.96 40.25 39.31 1.15 1.65 2.09 1.64
∆green = 5.6; ∆red = 10.25; ∆infrared = 15.75 44.49 40.30 37.39 1.68 1.66 1.67 1.68

and infrared bands. On the other hand, when ∆ is kept fixed for all
bands, reconstruction quality also becomes approximately the same.
This is shown in the fourth row of the table. Instead, the encoding
rate is now variable, still averaging 2bpp, with the easier to predict
green consuming a lower rate than the red, which, in turn, consumes
lower rate than the infrared band. Still, reconstruction is better in all
three bands, with the gain ranging from approximately 1.5dB to 6dB.

We also performed a similar test on an entire 7040×7936 aligned
image from the instrument—from which the above 512× 512 image
crop originated—targeting compression rate of roughly 1.68bpp. The
results are shown in Table II. As expected, the behavior is similar
to the smaller cropped image. A common ∆ for all bands leads to
similar reconstruction quality at different compression rates, whereas
varying ∆ for each band such that the rate is the same leads to
variations in reconstruction quality. As with the smaller crop, the
proposed approach outperforms [3].

V. DISCUSSION

Our approach combines ideas from compressed sensing and dis-
tributed source coding, resulting in a very low-complexity, rate-
efficient, source encoder. This approach is therefore well-suited for
use in computationally constrained systems, such as remote sensing
systems on satellites. Our experimental results demonstrate a signifi-
cant improvement in terms of reconstruction quality when compared
to similar lightweight approaches, such as [3].

In this paper we sidestep the question of how to encode the
reference band at low complexity and defer it to a future publication.
We also do not explore which band is best used as reference. Nor
do we attempt to use already decoded bands to further improve
prediction performance further. In general we expect that the better
the prediction is, the greater the compression we will achieve, as is
predicted by Thm. 1.

A key contribution of our approach is the development of the
theoretical connection between prediction performance and bit error
probability. However, a better understanding, especially in the case of
non-Gaussian matrices, is still an open question of practical interest.
Our analysis hits at strong connections between universal quantization
and distributed coding, also of theoretical importance.
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