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Abstract—The Iterative Born Approximation (IBA) is a
well-known method for describing waves scattered by semi-
transparent objects. In this letter, we present a novel nonlinear
inverse scattering method that combines IBA with an edge-
preserving total variation (TV) regularizer. The proposed method
is obtained by relating iterations of IBA to layers of an artificial
multi-layer neural network and developing a corresponding error
backpropagation algorithm for efficiently estimating the permit-
tivity of the object. Simulations illustrate that, by accounting
for multiple scattering, the method successfully recovers the
permittivity distribution where the traditional linear inverse
scattering fails.

Index Terms—Inverse scattering, sparse recovery, total varia-
tion regularization, neural networks, error backpropagation

I. INTRODUCTION

Knowledge of the spatial distribution of the permittivity
within an object is important for many applications since it
enables the visualization of the internal structure and physical
properties of the object. Measurements of the permittivity
are typically obtained by first illuminating the object with
a known incident wave and recording the resulting scattered
waves with sensors located outside the object. The spatial map
of permittivity is reconstructed from the measurements, using
computational inverse scattering methods that rely on models
describing the object-wave interaction.

Traditional approaches to inverse scattering formulate the
task as a linear inverse problem by establishing a linear
relationship between the permittivity and the scattered wave.
The linear model can be obtained by assuming a straight-
ray propagation of waves [1], or by adopting single-scattering
models based on the first Born [2] or Rytov approxima-
tions [3]. Once linearized, the problem can be efficiently
solved using the preferred regularized reconstruction methods,
typically based on sparsity and iterative optimization [4]–[6].

Recent experimental results indicate that the resolution
and quality of the reconstructed permittivity is improved
when nonlinear models are used instead of traditional linear
ones [7]–[9]. In particular, nonlinear models can account for
multiple scattering and provide a more accurate interpretation
of the measured data at the cost of increased computational
complexity of the reconstruction.

In this letter, we develop a new computational imaging
method to reconstruct the permittivity distribution of an object
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from transmitted or reflected waves. Our method is based on
a nonlinear model that can account for multiple scattering
in a computationally efficient way. Specifically, we propose
to interpret the iterations of the iterative Born approxima-
tion (IBA) [10] as layers of a feedforward neural network.
This formulation leads to an efficient error backpropagation
algorithm used to evaluate the gradient of the scattered field
with respect to the permittivity, thus enabling the recovery of
the latter from a set of measured scattered fields. The quality
of the final estimate is further enhanced by regularizing the
solution with an edge-preserving total variation (TV) penalty.
Our simulations indicate that our method accurately models
scattering without prohibitive computational overhead, and
successfully recovers the object where the traditional linear
approaches based on the first-Born approximation fail.

II. RELATED WORK

Three common approaches to nonlinear inverse scattering
are iterative Born [11]–[13], modified gradient [14]–[16], and
contrast-source inversion methods [17]. All these methods
attempt to iteratively minimize the discrepancy between the
actual and predicted measurements, while enforcing the con-
sistency of the fields inside the object. The actual optimization
is performed in an alternating fashion by first updating the
permittivity for a fixed field, and then updating the field for
a fixed permittivity; the difference between the methods is in
the actual computation of the updates. A book-chapter by van
den Berg [18] and a recent paper by Kim et al. [19] review
inverse scattering and provide detailed descriptions of standard
algorithms.

Recently, the beam propagation method (BPM) was pro-
posed for performing nonlinear inverse scattering in transmis-
sion [20]–[23]. BPM-based methods circumvent the need to
solve an explicit optimization problem for the internal field,
by instead numerically propagating the field slice-by-slice
through the object. It was shown that BPM can be related to a
neural network where each layer corresponds to a spatial slice
of the object, which allowed for the development of an efficient
backpropagation algorithm for reconstructing the object [23].

The nonlinear model presented in this letter is based on
IBA, which has a completely different mathematical structure
compared to BPM [24]. The main advantage of the proposed
formulation is that it allows reconstruction from reflections.
Additionally, unlike alternating minimization schemes that
assume a linear problem for a given internal field, our method
directly optimizes the nonlinear model in a tractable way using
error backpropagation.
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Fig. 1. Schematic representation of a scattering scenario. An object with a
contrast function f(x), x ∈ Ω, is illuminated with an input wave uin, which
interacts with the object and results in the scattered wave usc at the sensor
region Γ. The scattered wave is measured and used to computationally form
an image of f .

III. MAIN RESULTS

The method presented here can be generalized to a majority
of tomographic experiments in transmission or reflection. For
simplicity of derivations, we ignore absorption by assuming a
real permittivity; however, the equations can be generalized
to handle complex permittivities. We additionally assume
coherent measurements, i.e., that both the amplitude and phase
of the scattered wave are recorded at the sensor locations.

A. Problem Formulation

Consider the two-dimensional (2D) scattering problem illus-
trated in Fig. 1, where an object of real permittivity distribution
ε(x), with x = (x, y) ∈ Ω, is immersed into the background
medium of permittivity εb. The line sources that generate the
electromagnetic excitation and the sensors collecting the data
are located in the sensor region Γ ⊆ R2. Assuming a time
dependence exp(jωt), the incident electric field created by the
`th source, located at x` ∈ Γ, is given by

uin(x) = A
j

4
H

(2)
0 (kb‖x− x`‖`2), (1)

for all x ∈ R2, where A is the strength of the source,
H

(2)
0 is the zero-order Hankel function of the second kind,

kb = k0
√
εb is the wavenumber in the background medium,

k0 = ω/c0 = 2π/λ is the wavenumber in free space, λ is
the wavelength, and c0 ≈ 3 × 108 m/s. In the subsequent
derivations, we consider the scenario of a single illumination
and drop the indices `. The generalization to an arbitrary
number of illuminations L is straightforward.

The Lippmann-Schwinger integral equation describes the
relationship between the permittivity and the wave-field [18]

u(x) = uin(x) +

∫
Ω

g(x− x′)f(x′)u(x′) dx′, (2)

for all x ∈ Ω, where we define the contrast function1 (also
called scattering potential)

f(x) , k2
b (εb − ε(x)) (3)

and the Green’s function for the homogeneous medium

g(x) ,
j

4
H

(2)
0 (kb‖x‖`2). (4)

Similarly, the scattered field in the sensor region can be
expressed as

usc(x) = u(x)− uin(x) =

∫
Ω

g(x− x′)f(x′)u(x′) dx′ (5)

for any x ∈ Γ. Note that the integrals (2) and (5) extend only
over Ω because the contrast function f is zero for all x /∈ Ω.

The goal of inverse scattering is to estimate f , which is
equivalent to ε, given M measurements of {usc(xm)}m∈[1...M ]

in the sensor region Γ. Note that the maximum possible
number of independent measurements M in inverse scattering
was extensively discussed by Bucci and Isernia [25].

B. Iterative Born Approximation

At first glance, it might seem that (5) directly provides a
linear relationship between f and usc, which can be used to
solve the problem. However, the nonlinear nature of the rela-
tionship becomes evident if one realizes that the internal field
u = uin + usc in (5) depends on f . To capture this nonlinearity,
we consider a K-term iterative Born approximation (IBA) [10]
of the total field (2)

uk(x) = uin(x) +

∫
Ω

g(x− x′)f(x′)uk−1(x′) dx, (6)

where x ∈ Ω, u0 = 0, and k = 1, 2, . . . ,K. When K = 1,
eq. (6) reduces to the well-known first-Born approximation,
which assumes a single scattering from f by approximating
u(x) with the incident field uin(x). For K = 2, the approx-
imation of the total field is improved by taking into account
the second scattering due to an additional interaction between
the object and the field [26], [27]. For higher values of K the
approximation is further improved by accounting for multiple
scattering of order K (see also the discussion on multiple
scattering by Born and Wolf [10]).

In the context of general theory of integral equations,
the iterations of type (6) are known as Liouville-Neumann
series [28]. The sufficient condition for convergence states
that the norm of the integral operator acting on the field
should be less than unity. While this implies that IBA might
diverge for large permittivity contrasts and/or large objects,
it is still expected to work on a wide range of contrasts
where the linearized models fail, which is corroborated by our
simulations in Section IV. Additional information and criteria
on the convergence of IBA, as well as other possible series,
can be found in [29]–[31].

1Another common definition for the contrast function is
f(x) , (ε(x)− εb)/εb, which is proportional to the one we adopt
in this letter. Both definitions are equivalent and yield identical results.
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Fig. 2. Schematic representation of the multiple scattering as a neural network
for a single illumination and for K = 2, N = 3, and M = 2. The
contrast function f ∈ RN plays the role of nonlinearities, while matrices
H ∈ CM×N and G ∈ CN×N represent weights of the network. The error
backpropagation algorithm described here allows to efficiently estimate f by
comparing predicted field z ∈ CM against the actual measurements y ∈ CM .

C. Neural Network Interpretation
We now discretize and combine equations (5) and (6) into

the following matrix-vector recursion

z← H(uK � f), (7a)

uk ← u0 + G(uk−1 � f), (7b)

for k = 1, . . . ,K. Here, the vector f ∈ RN is the discretization
of the contrast function f , z ∈ CM is the predicted scattered
field usc at sensor locations {xm}m∈[1...M ], u0 ∈ CN is the
discretization of the input field uin inside Ω, H ∈ CM×N is the
discretization of the Green’s function at the sensor locations,
G ∈ CN×N is the discretization of the Green’s function inside
Ω, and � denotes a component-wise multiplication between
two vectors. For every k ∈ [1 . . .K], the vector uk ∈ CN
denotes the discretized version of the internal field after the
kth scattering.

Figure 2 illustrates the representation of (7) as a feedforward
neural network [32], where the edge weights are represented
in H and G and the nonlinear nodes are described by
the contrast function f . Note that the linear edge weights
correspond to convolution operators and can thus be efficiently
implemented with FFTs. Accordingly, the total computational
cost of evaluating one forward pass through the network is
O(KN log(N)).

D. Inverse Scattering Method
We formulate the inverse scattering as the following mini-

mization problem

f̂ = arg min
f∈F

{D(f) + τR(f)}, (8)

where D and R are the data-fidelity and regularization terms,
respectively, and τ > 0 is the regularization parameter. The
convex set F ⊆ RN enforces physical constraints on the
contrast function, for example, its non-negativity. The data-
fidelity term is given by

D(f) ,
1

2
‖y − z(f)‖2`2 ,

where y ∈ CM contains measurements of the scattered field
and z is the field predicted by the recursion (7). As a regular-
ization term, we propose to use isotropic TV penalty [33]

R(f) ,
N∑
n=1

‖[Df ]n‖`2 =

N∑
n=1

√
|[Dxf ]n|2 + |[Dyf ]n|2,

where D : RN → RN×2 is the discrete gradient operator with
matrices Dx and Dy denoting the finite difference operations
along x and y directions, respectively.

The optimization (8) can be performed iteratively using
a proximal-gradient scheme or one of its accelerated vari-
ants [34]–[36]. Specifically, the contrast function can be up-
dated with the following iteration

f t ← proxγτR
(
f t−1 − γ∇D(f t−1)

)
, (9)

where γ > 0 is a step-size and

proxτR(g) , arg min
f∈F

{
1

2
‖f − g‖2`2 + τR(f)

}
(10)

is the proximal operator, which corresponds to the TV regu-
larized solution of the denoising problem. Note that, although,
the proximal operator for isotropic TV does not admit a closed
form, it can be efficiently computed [35], [37]. The gradient
∇D can be expressed as follows

∇D(f) = Re

{[
∂

∂f
z(f)

]H

(z(f)− y)

}
, (11)

where the superscript H is the Hermitian transpose of the
Jacobian (∂z(f)/∂f). Then, by differentiating equations in (7)
with respect to f , and simplifying the resulting expressions, we
obtain the following error backpropagation algorithm

gk ← gk+1 +
[
GHvk+1

]
� ūk (12a)

vk ←
[
GHvk+1

]
� f , (12b)

where k = K − 1,K − 2, . . . , 0, with the initialization
vK = [HH(z− y)]� f and gK =

[
HH(z− y)

]
� ūK . Here,

the vector ū contains complex conjugated elements of u.
The final value of the gradient (11) is obtained by returning
∇D(f) = Re{g0}.

The remarkable feature of our error backpropagation ap-
proach is that it allows to efficiently evaluate the gradient of
the scattered field with respect to the contrast function. Due to
the convolutional structure of the matrices, its computational
complexity is equivalent to running a forward pass, which
is of order O(KN log(N)). Equipped with this algorithm,
the contrast function can be optimized via iteration (9). Note
that the algorithm does not explicitly evaluate and store the
Jacobian by instead computing its product with the residual
r = (z(f)− y), as indicated in (11).

IV. EXPERIMENTAL VALIDATION

To validate our Recursive Born (RB) method, we re-
port results for the tomographic experiment illustrated in
Fig. 1, where the scattered wave measurements were obtained
by running a high-fidelity Finite-Difference Time-Domain
(FDTD) [38] simulator. The object is the Shepp-Logan phan-
tom of size 82.39 cm × 112.35 cm and the background
medium is air with εb = 1. The measurements are collected
over 24 transmissions on a circle of radius R = 100 cm
with 15o angle increments and, for each transmission, 360
measurements around the object are recorded. The dimensions
of the computational domain for reconstruction are set to
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Fig. 3. Evaluation on Shepp-Logan with permittivity contrast of 0.15 at
λ = 7.49 cm and AWGN of variance corresponding to of 25 dB SNR. (a)
True contrast; (b) first-Born approximation; (c) alternating minimization; (d)
recursive-Born method with K = 32. The error is quantified in terms of SNR
in dB and relative MSE in %. Scale bar is equal to λ.
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Fig. 4. Illustration of the reconstruction performance on Shepp-Logan with
contrast of 0.15. Left: SNR is plotted against the number of layers in the
neural network. Right: normalized error between the true and predicted fields
is plotted at each iteration for K = 32. Results obtained with FB and AM
are marked with dashed lines.

Lx = Ly = 120 cm, with sampling steps δx = δy = 0.6 cm.
We define the permittivity contrast as fmax , (εmax − εb)/εb,
where εmax , maxx∈Ω{ε(x)}.

We compare results of our approach against two alternative
methods. As the first reference method (denoted first Born
(FB)), we consider the TV-regularized solution of the lin-
earized model based on the first-Born approximation, which
is known to be valid only for weakly scattering objects. Addi-
tionally, we consider a nonlinear inverse scattering approach
that is based on an optimization scheme (denoted Alternating
Minimization (AM)) that was run for a maximum of 2000
iterations by alternating between updating the contrast function
for a fixed field and updating the field for a fixed contrast
function. This method is conceptually similar to the one pro-
posed in [12], but with TV replacing the smooth regularizer,
due to the edge-preserving properties of the former. Hence, all
three methods minimize the same error functional; however,
each method relies on a distinct model. All the methods
were initialized with zero and iterated until convergence by
measuring the change in two successive estimates. Their reg-
ularization parameters were manually selected for the optimal
SNR performance.

Figure 3 compares the quality of the images obtained by all
three methods for the permittivity contrast of 0.15 at λ = 7.49

TABLE I
COMPARISON OF THREE METHODS IN TERMS OF SNR IN DB AND

RELATIVE MSE IN % FOR λ = 10 CM.

Permittivity Contrast fmax
0.05 0.1 0.15 0.2

FB 9.26/34.3% 6.37/48.0% 3.87/64.1% 2.13/78.1%

AM 13.31/21.6% 13.27/21.7% 13.07/22.2% 12.62/23.4%

RB 13.61/20.9% 13.56/21.0% 13.54/21.0% 12.94/22.5%

cm, where measurements are contaminated with additive white
Gaussian noise (AWGN) of variance corresponding to 25 dB
SNR. Note that, due to the object’s large size and contrast,
FB fails to characterize its structure. Alternatively, both AM
and RB succeed at recovering the object, with RB obtaining
an image of significantly superior quality. Figure 4 illustrates
the influence of the number of layers K on the quality of the
reconstructed image (left), and the evolution of the relative
data-fit ‖y − z‖2`2/‖y‖

2
`2

for every iteration with K = 32
(right). As can be appreciated from these plots, the proposed
method outperforms FB and AM, both in terms of signal-
to-noise ratio (SNR) and data-fit for networks with sufficient
number of layers. Additionally, the method converges rela-
tively fast—within first few tens of iterations.

Table I presents a quantitative evaluation of the methods
for different values of the permittivity contrast at λ = 10 cm
with AWGN of variance corresponding to 25 dB SNR. As
expected, the performance of all the methods degrades as the
contrast value increases, which might be due to the growing
degree of nonlinearity, and hence, nonconvexity of the inverse
scattering problem [39]. However, the solutions computed by
the proposed RB approach are better than the two alternatives,
FB and AM, for all values of the contrast.

Finally, from a computational perspective, a single iteration
of the method requires a number of FFTs proportional to
the number of scattering layers. In our simulations, accurate
results are obtained using about 100 iterations with networks
of approximately 20 layers. More concretely, our basic MAT-
LAB implementation required about 1.3 seconds per iteration
to process a transmission and 1.72 hours for a complete
reconstruction on a 4GHz Intel Core i7 processor with 32
GBs of memory. On the other hand, AM required about 1.03
seconds per iteration to process a transmission, which resulted
in a total reconstruction time of about 10.44 hours due to a
larger number of iterations for convergence.

V. CONCLUSION

The method developed in this letter reconstructs the dis-
tribution of the permittivity in an object from a set of
measured scattered waves. In particular, the method accounts
for multiple scattering of waves, in both transmission and
reflection, and can thus be used when linearized models
fail. The method is also computationally tractable due to
its convolutional structure and can be further accelerated by
parallelizing computations over multiple CPUs. We believe
that the approach presented here opens rich perspectives for
high-resolution tomographic imaging in a range of practical
setups where multiple scattering is an issue.
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