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Abstract:
Analog-to-digital conversion comprises of two fundamen-
tal discretization steps: sampling and quantization. Re-
cent results in compressive sensing (CS) have overhauled
the conventional wisdom related to the sampling step, by
demonstrating that sparse or compressible signals can be
sampled at rates much closer to their sparsity rate, rather
than their bandwidth. This work further overhauls the
conventional wisdom related to the quantization step by
demonstrating that quantizer overflow can be treated dif-
ferently in CS and by exploiting the tradeoff between
quantization error and overflow.
We demonstrate that contrary to classical approaches that
avoid quantizer overflow, a better finite-range scalar quan-
tization strategy for CS is to amplify the signal such that
the finite range quantizer overflows at a pre-determined
rate, and subsequently reject the overflowed measure-
ments from the reconstruction. Our results further sug-
gest a simple and effective automatic gain control strategy
which uses feedback from the saturation rate to control the
signal gain.

1. Introduction

Analog-to-digital converters (ADCs) are an essential part
of most modern sensing and communications systems.
They are the interface between the analog physical world
and the digital processing world that extracts the informa-
tion we are interested in. Ever-increasing demands for in-
formation has pushed the requirements on ADCs to their
current physical limits. Fortunately, recent theoretical de-
velopments in the area of compressive sensing (CS) enable
us to significantly extend the capabilities of current ADCs
to keep pace with demand.
CS is a framework that allows signals that have sparse rep-
resentation, i.e., few non-zero elements, or few non-zero
coefficients in some basis, to be sampled at a rate close to
the sparsity rate, rather than the Nyquist rate. CS employs
linear measurement systems and a non-linear reconstruc-
tion algorithms to acquire and recover sparse signals.
Most of the CS literature to-date focuses on one particular
aspect of ADCs, namely sampling. In this paper we re-
examine the other significant aspect, quantization. Specif-
ically, we show that the core tenets of CS enable us to
reduce the error due to quantization by allowing the quan-
tizer to saturate more often than usual and removing the

saturated measurements from the reconstruction process.
The organization of this paper is as follows. Section 2.
presents a brief background on analog-to-digital conver-
sion, compressive sampling, and finite-range quantization.
Section 3. presents a brief analysis of finite-range quanti-
zation for CS. We show that CS measurements and the
quantization error are i.i.d. Gaussian, and analyze the pro-
posed reconstruction strategy. Section 4., presents numer-
ical results that validate our analysis. We conclude with a
brief discussion in Sec. 5.

2. Background

2.1 Analog-to-digital conversion
Analog-to-digital conversion consists of two discretization
steps: sampling, which converts an analog signal to a set
of discrete measurements, and quantization, which con-
verts each real-valued measurement to a discrete one cho-
sen from a pre-determined set. Although both steps are
necessary to represent a signal in the discrete digital world,
classical results due to Shannon and Nyquist demonstrate
that the sampling step is information preserving if a suffi-
cient number of samples, i.e., measurements, are obtained.
On the other hand quantization always degrades the signal.
The system design to goal is to take enough measurements
such that the signal does not alias, and to acquire enough
bits to limit the quantization distortion.

2.2 Finite-range quantization
Scalar quantization is the process of converting the contin-
uous value of the measurements to one of several discrete
values through a non-invertible function R(·). In this pa-
per we focus on uniform quantizers with quantization in-
terval ∆. Thus, the quantization points are qk = q0 + k∆,
and every scalar a is quantized to the nearest quantiza-
tion point R(a) = argminqk

|a− qk|. For an infinite-
range quantizer this implies that the quantization error is
bounded by |a−R(q)| ≤ ∆/2.
In practice quantizers have finite range, dictated by hard-
ware constraints such as the voltage limits of the de-
vices and the finite bit-rate of the quantized representa-
tion. Without loss of generality we assume a midrise B-
bit quantizer that represents a symmetric range of val-
ues |a| < T , where T > 0 is the quantization thresh-
old. The corresponding quantization points are at qk =



∆/2 + k∆, k = −2B−1, . . . , 2B−1 − 1. This assump-
tion implies a quantization interval ∆ = 2−B+1T . Any
measurement with magnitude greater than T saturates the
quantizer and “clips” to magnitude T , i.e., it quantizes to
the quantization point T −∆/2.
Most classical quantization error analysis assumes that
the measurements are scaled such that the quantizer never
clips. This is a sensible quantization strategy for classi-
cal approaches using linear reconstruction. In that context,
saturation events cause significant signal distortion and are
undesirable. For that reason, extreme attention is often de-
voted to pre-ADC automatic gain control (AGC) systems
to ensure that the quantizer saturates only rarely. Under
this assumption the analysis of a finite or an infinite range
quantizer is equivalent in terms of the quantization error.
Thus, an infinite-range quantizer is often assumed for its
mathematical simplicity.

2.3 Compressive sampling (CS)
The theory of compressive sampling (CS) overhauls the
conventional wisdom on the sampling process. Specifi-
cally, [2] and the references therein show that the number
of measurements that are sufficient to exactly reconstruct a
sampled signal are significantly fewer than the Shannon-
Nyquist rate as long as the signal is sparse, i.e., can be
represented with very few non-zero components in some
basis.
The key components of CS are randomized measurements
and non-linear reconstruction. Specifically, a Nyquist-
rate sampled discrete-time signal x can be sampled at a
lower rate by using a random matrix Φ, of dimension
M ×N :

y = Φx, (1)
and reconstructed exactly, if the signal is K-sparse, i.e.,
only has K non-zero components in some basis and
the matrix Φ satisfies the Restricted Isometry Property
(RIP) [2]:√

1− δ2K‖x‖2 ≤ ‖Φx‖2 ≤
√

1 + δ2K‖x‖2 (2)
for all 2K-sparse signals x, where δ2K is the RIP con-
stant of Φ. RIP guarantees that the norm of the measure-
ments does not deviate significantly from the norm of the
K-sparse signal x.
To reconstruct x̂ from y+n, where n is noise with ‖n‖2 =
η, we perform the optimization

α̂ = min
α
‖α‖1 s.t. ‖ΦΨα− y‖2 < η, x̂ = Ψα̂ (3)

where Ψ is a basis and ‖α‖1 =
∑

i |αi| is the `1 norm of
the coefficient vector. Reconstructing using (3) guarantees
that the norm of the reconstruction error is bounded by cη,
where c is a system-dependent constant [2].
In this paper we use the two key components of CS,
namely randomized measurements and non-linear recon-
struction, to overhaul the conventional wisdom on scalar
quantization. In the next sections we demonstrate that the
CS measurement process makes the quantization error a
white noise process. We use that result demonstrate that
in the context of non-linear reconstruction it is advanta-
geous to scale the signal such that the quantizer saturates
at a positive rate and reject the saturated measurements
from the reconstruction.

3. Finite-range quantization for CS

The non-linear reconstruction methods used in CS and the
democratic nature of the measurements, suggests that with
only a small performance penalty, we can choose to ig-
nore measurements. Specifically, in this work we choose
to deliberately saturate the quantizer and ignore the mea-
surements that saturated. In the analysis that follows we
demonstrate the advantages of this approach compared to
scaling the measurements such that they do not saturate
or incorporating the saturated measurements in the recon-
struction.
The analysis is based on three distinct results:

1. CS measurements approximately follow an i.i.d.
Gaussian distribution, making the quantization error
a well characterized white noise process.

2. Clipping without quantization followed by drop-
ping the saturated measurements preserves the signal
norm and the RIP.

3. Once quantization is introduced, the signal-to-
quantization noise ratio can be minimized by select-
ing a positive saturation rate and rejecting the satu-
rated measurements.

The subsequent sections state and sketch the proofs for
these results and their consequences. Due to space limita-
tions, we defer complete proofs and extended analysis to
future publications.

3.1 Distribution of CS measurements
We assume the measurement matrix Φ in (1) is randomly
generated using a zero-mean sub-Gaussian distribution
with variance 1/M . Under this assumption, all the mea-
surements yi =

∑
j(Φ)i,jxj are i.i.d. zero-mean random

variables with variance ‖x‖2
2/M . Using the Lyapunov

variant of the Central Limit Theorem, it is also straight-
forward to show that as the dimension N of the signal x
increases the yi become normally distributed. The state-
ment becomes non-asymptotic if the elements of Φ are
themselves distributed as a Gaussian. Our initial experi-
ments show that commonly used CS matrix families reach
asymptotic behavior even for small N .
The implications of this statement are threefold:

1. The expected number of measurements exceeding in
magnitude a threshold T‖x‖2/

√
M is 2Q(T ), where

Q(x) = 1√
2π

∫ +∞
x

e−t2/2dt is the tail integral of the
standard Gaussian distribution.

2. The ratio of T‖x‖2/
√

M determines the saturation
rate. Thus, scaling the signal such that a specific sat-
uration rate is achieved provides a very effective gain
control strategy.

3. The quantization error is a white process, although it
is correlated to the measurements.

We should note that in the sequel only the ratio
T
√

M/‖x‖2 is relevant. This ratio is the threshold we se-
lect by varying the parameter T . The

√
M factor reflects

that in practical systems the variance of the elements of
the measurement matrix is not a function of the number of
measurements. The normalization by ‖x‖2 reflects that in
practice automatic gain control or prior signal knowledge
is used to determine the proper gain in the input.



3.2 Analysis of finite-range CS measurements
In this section we introduce clipping at threshold
T‖x‖2/

√
M , without quantization. We reject the clipped

measurements and demonstrate that if the remaining mea-
surements, denoted using ỹ, are sufficient in number, the
measurement process still satisfies the RIP and preserves
the norm of K-sparse signals. We use the notation (̃·) to
denote the relevant quantities after the saturated measure-
ments are dropped: M̃ is the number of remaining mea-
surements and Φ̃ the mutilated measurement matrix corre-
sponding to the remaining measurements.
Assuming the result of Sec. 3.1, the expected number of
saturated measurements is 2MQ(T ). The remaining M̃
measurements follow a truncated Gaussian distribution:

ỹi ∝

{
N
(
yi; 0,

‖x‖22
M

)
, |yi| < T‖x‖22√

M

0, otherwise.
(4)

Thus, the expected norm of ỹ is equal to:
E{‖ỹ‖2

2} = M(1− 2Q(T ))σ2
T , (5)

where σ2
T is the variance of (4). Thus, the scaled system

Gỹ = GΦ̃x (6)

G =
(

‖x‖2
2

M(1− 2Q(T ))σ2
T

)1/2

(7)

=

( √
2π√

2π(1− 2Q(T ))− 2Te−T 2/2

)1/2

(8)

preserves the expected value of the norm of the signal. It is
also straightforward to demonstrate that the density of the
norm of the signal concentrates around its expected value
with very high probability, in manner similar to [1, 3].
It is also possible to demonstrate that the resulting Φ̃,
which is now signal-dependent, preserves the RIP for all
K-sparse signals, as long as M̃ = O(K log (N/K)), or
equivalently M = O(K log (N/K)/(1 − 2Q(T )). The
proof is beyond the scope of this paper [5]. However, it
is important since it guarantees recovery of the signal, and
the robustness to noise we need in the next section.

3.3 Quantization noise
In this section we quantize the thresholded measurements
using quantization interval ∆ = 2−B+1T‖x‖2/

√
M :

R(ỹ) = ỹ + ε̃Q, (9)
where ε̃Q is the vector of the quantization error. From
the results of Sec. 3.1 and the distribution of the measure-
ments after thresholding it follows that εQ is a white ran-
dom vector with elements distributed as a wrapped trun-
cated Gaussian random variable and bounded by ±∆/2.
For small quantization intervals the distribution is well ap-
proximated by a uniform distribution in the same interval,
with variance ∆2/12 [6]. Assuming a unit norm input x
the expected squared norm of the quantization error is:

E{‖ε̃Q‖2
2} = M(1− 2Q(T ))∆2/12 (10)

= 2−2B(1− 2Q(T ))T 2/3. (11)
It can also be shown that for large M the measure of this
norm concentrates around its mean. When properly scaled
with the G in (8), the quantization error becomes:

E{‖Gε̃Q‖2
2} =

√
2π2−2B

3
T 2

√
2π − Te−T2/2

(1−2Q(T ))

, (12)

which suggests an optimal threshold T that minimizes the
error.
If the RIP is guaranteed, the norm of reconstruction error
can be bounded by c‖Gε̃q‖2

2 with very high probability
[2]. For most practical applications, the minimizing T in
(12) is not sufficient to guarantee RIP, and therefore we
select the smallest T that does.
A similar analysis can be performed if we keep all the sat-
urated measurements. In this case the RIP always holds
and the measurement error is equal to:

E{‖εQ‖2
2} = (13)

= M

(
(1− 2Q(T ))

∆2

12
+

2Q(T )‖x‖2
2

M
σ2

trunc

)
, (14)

= ‖x‖2
2

(
(1− 2Q(T ))

2−2B

3
+ 2Q(T )σ2

trunc

)
, (15)

where σ2
trunc is the variance of the tail distribution for a

standard Gaussian random variable, as truncated by the
saturation. Detailed analysis of this can be found in [4].
At T decreases, both σtrunc and Q(T ) increases, which
means the error due to the saturated measurements in-
creases at the error due to the unsaturated measurements
decreases. The optimal T in this case minimizes (15).
The two strategies can be compared to select the opti-
mal given the operating conditions. Especially in low-bit
conditions, reducing the quantization interval pays off in
terms of the error. However, the tail effects cause a sig-
nificant penalty if we keep the measurements, and the bet-
ter strategy is to discard them. As we discuss in the next
section in our extensive simulations under a large variety
of practical conditions discarding the measurements per-
forms better than using them.

4. Experimental validation

4.1 Experimental setup
Signal model: We study the performance of our approach
using signals sparse in the frequency domain: in each trial
K non-zero Fourier coefficients αn are drawn from an
i.i.d. Gaussian distribution, normalized to have unit norm,
and randomly assigned to K frequency bins out of the N -
dimensional space. The sampled signal x is the DFT of the
generated Fourier coefficients. Beyond quantization we do
not include additional noise sources. In addition to exactly
sparse signals, we have performed extensive simulations
with compressible signals and confirmed similar results.
However, compressible signals are beyond the scope of
this paper.
Measurement matrix: For each trial a measurement ma-
trix is generated using a Rademacher distribution: each el-
ement is drawn independently to be +1 or −1 with equal
probability. Our extended experimentation, not shown
here in the interest of space, shows that our results are
robust to large variety of measurement matrix classes.
Reconstruction metric: We report the reconstruction
signal-to-noise ratio (SNR) in decibels (dB):

SNR , 10 log
(

‖x‖2
2

‖x− x̂‖2
2

)
, (16)

where x̂ denotes the reconstructed signal.
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Figure 1: Reconstruction SNR (dB) vs. quantizer saturation threshold (T ) using a 4-bit quantizer and downsampling rate M
N

=
1
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when (a) the saturated measurements are used for reconstruction and (b) the saturated measurements are discarded before
reconstruction. (c) Side-by-side comparison of (a) and (b) for M

N
= 3

16
and 15

16
: by lowering the threshold T and rejecting saturated

measurements, we achieve the highest reconstruction SNR.

4.2 Experimental results

We performed extensive simulations with a variety of sig-
nal parameters. Due to space limitations, we present here
the results for N = 2048, K = 60, and B = 4 which
are typical of the system performance. In our experiments
we vary M such that M

N = 1
16 . . . 15

16 and the threshold T
in the range [0, 0.18]. For each parameter combination we
repeat 100 trials, each trial with a different signal x and
matrix Φ as described in Sec. 4.1.

For each trial we quantize the measurements using a finite-
range quantizer and use them to reconstruct the signal (a)
by incorporating the saturated measurements in the re-
construction and (b) by discarding the saturated measure-
ments before reconstruction. Both cases use the linear pro-
gram (3) with the appropriate value for η. We denote the
reconstructed signal with x̂keep and x̂discard, respectively.

The results are shown in Fig. 1, which plots the average
reconstruction SNR versus the quantizer dynamic range T
for a variety of M

N . In particular, Figs. 1 (a) and (b) display
the SNR of x̂keep and x̂discard, respectively. Figure 1 (c)
compares the two approaches for the two extreme cases of
M
N = 3

16 and M
N = 15

16 .

The plots demonstrate that lowering the threshold T such
that the saturation rate is non-zero achieves a higher re-
construction SNR compared to scaling such that no mea-
surements clip. Furthermore, rejecting saturated measure-
ments performs better than incorporating them in the re-
construction. This is best illustrated in Fig. 1 (c): the
optimal point on the dashed line, which corresponds to
discarding saturated measurements, exhibits better SNR
than the optimal point on the solid line, which corresponds
to incorporating saturated measurements. As expected,
the curves coincide when the saturation rate is effectively
zero.

We also performed this experiment for larger values of K
and B. As expected with higher B, we achieve less per-
formance gain. As B grows, the quantization error goes
down and thus reducing the quantization interval by drop-
ping measurements is less effective. As K increases, re-
jecting measurements remains an optimal strategy. How-
ever, when K is large enough such that the non-saturated
measurements do not satisfy RIP, our method performs
worse than incorporating the saturated measurements.

5. Discussion

Our results demonstrate that CS overthrows the conven-
tional wisdom on finite range quantization. Specifically
the common practice of scaling the signal such that the
ADC does not overflow is not optimal in light of the non-
linear reconstruction. Our results demonstrate that allow-
ing the signal to saturate is advantageous because it de-
creases the quantization interval in the unsaturated mea-
surements. The non-linear reconstruction methods allow
us to discard saturated measurements and prevent the sat-
uration error from affecting the reconstruction process.
Our results further suggests a simple automatic gain con-
trol (AGC) strategy, in which the deviation of the average
clipping rate from the desired one is used as a feedback
to modify the gain. Since the desired clipping rate is non-
zero, the feedback is symmetric and increases the gain if
the clipping rate is too low. In comparison, classical AGC
systems rely on the clipping rate only when the gain is too
high and should be reduced. Since in such systems a zero
clipping rate is the desired behavior, the AGC needs to rely
on other signal features to ensure the gain is sufficient to
provide a good signal-to-quantization noise ratio.
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