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Democracy in Action: Quantization, Saturation, and
Compressive Sensing

Jason N. Laska, Petros T. Boufounos, Mark A. Davenport, and Richard G. Baraniuk

Abstract—Recent theoretical developments in the area of
compressive sensing (CS) have the potential to significantly extend
the capabilities of digital data acquisition systems such as analog-
to-digital converters and digital imagers in certain applications.
A key hallmark of CS is that it enables sub-Nyquist sampling
for signals, images, and other data. In this paper, we explore
and exploit another heretofore relatively unexplored hallmark,
the fact that certain CS measurement systems are democractic,
which means that each measurement carries roughly the same
amount of information about the signal being acquired. Using the
democracy property, we re-think how to quantize the compressive
measurements in practical CS systems. If we were to apply the
conventional wisdom gained from conventional Shannon-Nyquist
uniform sampling, then we would scale down the analog signal
amplitude (and therefore increase the quantization error) to avoid
the gross saturation errors that occur when the signal amplitude
exceeds the quantizer’s dynamic range. In stark contrast, we
demonstrate that a CS system achieves the best performance
when it operates at a significantly nonzero saturation rate.
We develop two methods to recover signals from saturated CS
measurements. The first directly exploits the democracy property
by simply discarding the saturated measurements. The second
integrates saturated measurements as constraints into standard
linear programming and greedy recovery techniques. Finally, we
develop a simple automatic gain control system that uses the
saturation rate to optimize the input gain.

Index Terms—compressive sensing, quantization, saturation,
inequality constraint, consistent reconstruction

I. INTRODUCTION

ANALOG-TO-DIGITAL converters (ADCs) are an essen-
tial component in digital sensing and communications

systems. They interface the analog physical world, where
many signals originate, with the digital world, where they can
be efficiently processed and analyzed. As digital processors
have become smaller and more powerful, their increased ca-
pabilities have inspired applications that require the sampling
of ever-higher bandwidth signals. This demand has placed a
growing burden on ADCs [1]. As ADC sampling rates push
higher, they move toward a physical barrier, beyond which
their design becomes increasingly difficult and costly [2].

Fortunately, recent theoretical developments in the area of
compressive sensing (CS) have the potential to significantly
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extend the capabilities of current ADCs to keep pace with
demand [3, 4]. CS provides a framework for sampling signals
at a rate proportional to their information content rather than
their bandwidth, as in Shannon-Nyquist systems. In CS, the
information content of a signal is quantified as the number of
nonzero coefficients in a known transform basis over a fixed
time interval [5]. Signals that have few nonzero coefficients are
called sparse signals. More generally, signals with coefficient
magnitudes that decay rapidly are called compressible, because
they can be well-approximated by sparse signals. By exploiting
sparse and compressible signal models, CS provides a method-
ology for simultaneously acquiring and compressing signals.
This leads to lower sampling rates and thus simplifies hardware
designs. The CS measurements can be used to reconstruct the
signal or can be directly processed to extract other kinds of
information.

The CS framework employs non-adaptive, linear measure-
ment systems and non-linear reconstruction algorithms. In
most cases, CS systems exploit a degree of randomness in or-
der to provide theoretical guarantees on the performance of the
system. Such systems exhibit additional desirable properties
beyond lower sampling rates. In particular, the measurements
are democratic, meaning that each measurement contributes an
equal amount of information to the compressed representation.
This is in contrast to both conventional sampling systems
and conventional compression algorithms, where the removal
of some samples or bits can lead to high distortion, while
the removal of others will have negligible effect. One of the
contributions of this paper is to formally define and quantify
the democracy of the CS measurement process. Although the
term was loosely used before, this is the first time, to our
knowledge, that such a formulation exists.

Several CS-inspired hardware architectures for acquiring
signals, images, and videos have been proposed, analyzed, and
in some cases implemented [6–15]. The common element in
each of these acquisition systems is that the measurements are
ultimately quantized, i.e., mapped from real-values to a set of
countable values, before they are stored or transmitted. In this
paper, we focus on this quantization step.

While the effect of quantization on the CS framework has
been previously explored [16–19], prior work has ignored sat-
uration. Saturation occurs when measurement values exceed
the saturation level, i.e., the dynamic range of a quantizer.
These measurements take on the value of the saturation level.
All practical quantizers have a finite dynamic range for one
of two reasons, or both: (i) physical limitations allow only a
finite range of voltages to be accurately converted to bits and,
(ii) only a finite number of bits are available to represent each
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value. Quantization with saturation is commonly referred to
as finite-range quantization.

The challenge in dealing with the errors imposed by finite-
range quantization is that, in the absence of an a priori
upper bound on the measurements, saturation errors are poten-
tially unbounded. Most CS recovery algorithms only provide
guarantees for noise that is either bounded or bounded with
high probability (for example, Gaussian noise) [20], with the
exception of [21, 22] which consider sparse or impulsive noise
models, and [23, 24] which consider unbounded noise from
particular distributions.

The intuitive approach to dealing with finite-range quanti-
zation is to scale the measurements so that saturation never
or rarely occurs. However, rescaling the signal comes at a
cost. The signal-to-noise ratio (SNR) is decreased on the
measurements that do not saturate, and so the SNR of the
acquired signal will decrease as well.

In this paper, we present two new approaches for mitigating
unbounded quantization errors caused by saturation in CS
systems. The first approach simply discards saturated mea-
surements and performs signal reconstruction without them.
The second approach is based on a new CS recovery algorithm
that treats saturated measurements differently from unsaturated
ones. This is achieved by employing a magnitude constraint on
the indices of the saturated measurements while maintaining
the conventional regularization constraint on the indices of
the other measurements. We analyze both approaches and
show that both can recover sparse and compressible signals
with guarantees similar to those for standard CS recovery
algorithms.

Our proposed methods exploit the democratic nature of CS
measurements. Because each measurement contributes equally
to the compressed representation, we can remove some of them
and still maintain a sufficient amount of information about the
signal to enable recovery. We prove this fact, which allows us
to provide a simple analysis of the two approaches described
above and yields concrete bounds on how many measurements
are sufficient to ensure that we are robust to the saturation of
some specified number of measurements.

When characterizing our methods, we find that in order
to maximize the acquisition SNR, the optimal strategy is to
allow the quantizer to saturate at some nonzero rate. This is
due to the inverse relationship between quantization error and
saturation rate: as the saturation rate increases, the distortion of
remaining measurements decreases. Our experimental results
show that on average, the optimal SNR is achieved at nonzero
saturation rates. This demonstrates that just as CS challenges
the conventional wisdom of how to sample a signal, it also
challenges the conventional wisdom of avoiding saturation
events.

Since the optimal signal recovery performance occurs at a
nonzero saturation rate, we present a simple automatic gain
control (AGC) that adjusts the gain of the analog input signal
so that the desired saturation rate is achieved. According to one
rule of thumb, a conventional AGC will set the gain such that
there is an average of 63 clips per million samples [25]. Thus,
because the desired saturation rate is close to zero, saturation
rate alone cannot be used to design a stable AGC. However,

since the optimal CS performance occurs at a significantly
non-zero saturation rate, our proposed AGC uses only the
saturation rate to determine the gain.

The organization of this paper is as follows. In Section II,
we review quantization with saturation and the key concepts
of the CS framework. In Section III, we discuss the problem
of unbounded saturation error in CS and define our proposed
solutions. In Section IV we provide theoretical analysis to
show that CS measurements are democratic and that our
solutions solve the stated problem. In Section V, we validate
our claims experimentally and show that in many scenarios,
we achieve improved performance. In Section VI we derive a
simple AGC for CS systems and in Section VII we discuss how
the democracy property can be useful in other applications.

II. BACKGROUND

A. Analog-to-digital conversion

ADC consists of two discretization steps: sampling, which
converts a continuous-time signal to a discrete-time set of
measurements, followed by quantization, which converts the
continuous value of each measurement to a discrete one chosen
from a pre-determined, finite set. Both steps are necessary to
represent an analog signal in the discrete digital world.

The discretization step can be lossless or lossy. For example,
classical results due to Shannon and Nyquist demonstrate that
the sampling step induces no loss of information, provided
that the signal is bandlimited and a sufficient number of
measurements (or samples) are obtained. Similarly, sensing of
images assumes that the image is sufficiently smooth such that
the integration of light in each pixel of the sensor is sufficient
for a good quality representation of the image. Our paper
assumes the existence of a discretization that exactly represents
the signal, or approximates to sufficient quality. Examples of
such discretizations and their implementation in the context
of compressive sensing can be found in [7–15]. We briefly
discuss aspects of such systems in Sec. II-D.

Instead we focus on the second aspect of digitization,
namely quantization. Quantization results in an irreversible
loss of information unless the measurement amplitudes belong
to the discrete set defined by the quantizer. A central ADC
system design goal is to minimize the distortion due to
quantization.

B. Scalar quantization

Scalar quantization is the process of converting the contin-
uous value of an individual measurement to one of several
discrete values through a non-invertible function R(·). Prac-
tical quantizers introduce two kinds of distortion: bounded
quantization error and unbounded saturation error.

In this paper, we focus on uniform quantizers with quan-
tization interval ∆. Thus, the quantized values become qk =
q0 + k∆, for k ∈ Z, and every measurement g is quantized
to the nearest quantization level R(g) = argminqk

|g − qk| =
∆/2 + k∆, the midpoint of each quantization interval. This
minimizes the expected quantization distortion and implies
that the quantization error per measurement, |g − R(q)|, is



3

(a) (b)
Fig. 1. (a) Midrise scalar quantizer. (b) Finite-range midrise scalar quantizer
with saturation level G.

TABLE I
QUANTIZATION PARAMETERS.

G saturation level
B number of bits
∆ bin width
∆/2 maximum error per (quantized) measurement
unbounded maximum error per (saturated) measurement

bounded by ∆/2. Figure 1(a) depicts the mapping performed
by a midrise quantizer.

In practice, quantizers have a finite dynamic range, dictated
by hardware constraints such as the voltage limits of the
devices and the finite number of bits per measurement of
the quantized representation. Thus, a finite-range quantizer
represents a symmetric range of values |g| < G, where G > 0
is known as the saturation level [26]. Values of g between
−G and G will not saturate, thus, the quantization interval
is defined by these parameters as ∆ = 2−B+1G. Without
loss of generality we assume a midrise B-bit quantizer,
i.e., the quantization levels are qk = ∆/2 + k∆, where
k = −2B−1, . . . , 2B−1−1. Any measurement with magnitude
greater than G saturates the quantizer, i.e., it quantizes to the
quantization level G − ∆/2, implying an unbounded error.
Figure 1(b) depicts the mapping performed by a finite range
midrise quantizer with saturation level G and Table I summa-
rizes the parameters defined with respect to quantization.

C. Compressive sensing (CS)

In the CS framework, we acquire a signal x ∈ RN via the
linear measurements

y = Φx + e, (1)

where Φ is an M × N measurement matrix modeling the
sampling system, y ∈ RM is the vector of samples acquired,
and e is an M × 1 vector that represents measurement errors.
If x is K-sparse when represented in the sparsity basis Ψ, i.e.,
x = Ψα with ‖α‖0 := |supp(α)| ≤ K, then one can acquire
only M = O(K log(N/K)) measurements and still recover
the signal x [3, 4]. A similar guarantee can be obtained for
approximately sparse, or compressible, signals. Observe that
if K is small, then the number of measurements required can
be significantly smaller than the Shannon-Nyquist rate.

In [27], Candès and Tao introduced the restricted isometry
property (RIP) of a matrix Φ and established its important

role in CS. From [27], we have the definition,

Definition 1. A matrix Φ satisfies the RIP of order K with
constant δ ∈ (0, 1) if

(1− δ)‖x‖22 ≤ ‖Φx‖22 ≤ (1 + δ)‖x‖22 (2)

holds for all x such that ‖x‖0 ≤ K.

In words, Φ acts as an approximate isometry on the set
of vectors that are K-sparse in the basis Ψ. An impor-
tant result is that for any unitary matrix Ψ, if we draw
a random matrix Φ whose entries φij are independent re-
alizations from a sub-Gaussian distribution, then ΦΨ will
satisfy the RIP of order K with high probability provided that
M = O(K log(N/K)) [28]. In this paper, without the loss of
generality, we fix Ψ = I, the identity matrix, implying that
x = α.

The RIP is a necessary condition if we wish to be able
to recover all sparse signals x from the measurements y.
Specifically, if ‖x‖0 = K, then Φ must satisfy the lower
bound of the RIP of order 2K with δ < 1 in order to ensure
that any algorithm can recover x from the measurements y.
Furthermore, the RIP also suffices to ensure that a variety
of practical algorithms can successfully recover any sparse or
compressible signal from noisy measurements. In particular,
for bounded errors of the form ‖e‖2 ≤ ε, the convex program

x̂ = argmin
θ

‖x‖1 s.t. ‖Φx− y‖2 ≤ ε (3)

can recover a sparse or compressible signal x. The following
theorem, a slight modification of Theorem 1.2 from [29],
makes this precise by bounding the recovery error of x with
respect to the measurement noise norm, denoted by ε, and with
respect the best approximation of x by its largest K terms,
denoted using xK .

Theorem 1. Suppose that ΦΨ satisfies the RIP of order 2K
with δ <

√
2−1. Given measurements of the form y = ΦΨx+

e, where ‖e‖2 ≤ ε, then the solution to (3) obeys

‖x̂− x‖2 ≤ C0ε+ C1
‖x− xK‖1√

K
,

where

C0 =
4(1 + δ)

1− (
√

2 + 1)δ
, C1 =

1 + (
√

2− 1)δ
1− (

√
2 + 1)δ

.

While convex optimization techniques like (3) are a power-
ful method for CS signal recovery, there also exist a variety
of alternative algorithms that are commonly used in practice
and for which performance guarantees comparable to that of
Theorem 1 can be established. In particular, iterative algo-
rithms such as CoSaMP and iterative hard thresholding (IHT)
are known to satisfy similar guarantees under slightly stronger
assumptions on the RIP constants [30, 31]. Furthermore, alter-
native recovery strategies based on (3) have been analyzed
in [20, 32]. These methods replace the constraint in (3) with
an alternative constraint that is motivated by the assumption
that the measurement noise is Gaussian in the case of [20] and
that is agnostic to the value of ε in [32].
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Fig. 2. Random demodulator compressive ADC.

D. CS in practice

Several hardware architectures have been proposed and
implemented that allow CS to be used in practical settings with
analog signals. Examples include the random demodulator,
random filtering, and random convolution for signals [7–9, 14,
15], and several compressive imaging architectures [10–12].

We briefly describe the random demodulator as an example
of such a system [7]. Figure 2 depicts the block diagram of the
random demodulator. The four key components are a pseudo-
random ±1 “chipping sequence” pc(t) operating at the Nyquist
rate or higher, a low pass filter, often represented by an ideal
integrator with reset, a low-rate ADC, and a quantizer. An
input analog signal x(t) is modulated by the chipping sequence
and integrated. The output of the integrator is sampled, and the
integrator is reset after each sample. The output measurements
from the ADC are then quantized.

Systems such as these represent a linear operator mapping
the analog input signal to a discrete output vector, followed
by a quantizer. It is possible, but beyond the scope of this
paper, to relate this operator to a discrete measurement matrix
Φ which maps, for example, the Nyquist-rate samples of
the input signal to the discrete output vector [7, 15, 33]. In
this paper we will restrict our focus to settings in which the
measurement operator Φ can be represented as an M × N
matrix.

III. SIGNAL RECOVERY FROM SATURATED
MEASUREMENTS

A. Unbounded saturation error

A standard CS recovery approach like (3) assumes that
the measurement error is bounded. However, when quantizing
the measurements y, the error on saturated measurements is
unbounded. Thus, conventional wisdom would suggest that
the measurements should first be scaled down appropriately
so that none saturate.

This approach has two main drawbacks. First, rescaling
the measurements reduces the saturation rate at the cost of
increasing the quantization error on each measurement that
does not saturate. Saturation events may be quite rare, but the
additional quantization error will affect every measurement
and induce a higher reconstruction error than if the signal
had not been scaled and no saturation occurred. Second,
in practice, saturation events may be impossible to avoid
completely.

However, unlike conventional sampling systems that employ
linear interpolation-based reconstruction, where each sample

contains information for only a localized portion of the signal,
CS measurements contain information for a larger portion of
the signal. This creates a need for non-linear reconstruction
algorithms but gives rise to some practical benefits such as
robustness to the loss of a small number of measurements.

In this section, we propose two approaches for handling
saturated measurements in CS systems:

1) saturation rejection: simply discard saturated measure-
ments and then perform signal recovery on those that
remain;

2) constrained optimization: incorporate saturated measure-
ments in the recovery algorithm by enforcing consistency
on the saturated measurements.

While both of these approaches are intuitive modifications of
standard CS recovery algorithms, it is not obvious that they are
guaranteed to work. For instance, in order for the saturation
rejection approach to work we must be able to recover the
signal using only the measurements that are retained, or
equivalently, using only the rows of Φ that are retained. An
analysis of the properties of this matrix will be essential to
understanding the performance of this approach. Similarly, it
unclear when the combination of the retained measurements
plus the additional information provided by the saturation
constraints is sufficient to recover the signal. A main result
of this paper, that we prove below, is that there exists a class
of matrices Φ such that an arbitrary subset of their rows
will indeed satisfy the RIP, in which case existing results can
provide performance guarantees for both of these approaches.

Before describing our approaches for handling saturated
measurements in greater detail, we briefly establish some
notation that will prove useful for the remainder of this paper.
Let Γ ⊂ {1, 2, , . . . ,M}. By ΦΓ we mean the |Γ| × M
matrix obtained by selecting the rows of Φ indexed by Γ.
Alternatively, if Λ ⊂ {1, 2, . . . , N}, then we use ΦΛ to
indicate the M×|Λ| matrix obtained by selecting the columns
of Φ indexed by Λ.

B. Recovery via saturation rejection

An intuitive way to handle saturated measurements is to
simply discard them [34]. Denote the vector of the measure-
ments that did not saturate as ỹ with length M̃ . The matrix
Φ̃ is created by selecting the rows of Φ that correspond
to the elements of ỹ. Then, as an example, using (3) for
reconstruction yields the program:

x̂ = argmin
x
‖x‖1 s.t. ‖Φ̃x− ỹ‖2 < ε. (4)

There are several advantages to this approach. Any fast or
specialized recovery algorithm can be employed without mod-
ification. In addition, the speed of most algorithms will be
increased since fewer measurements are used.

The saturation rejection approach can also be applied in
conjunction with processing and inference techniques such as
the smashed filter [35] for detection, which utilizes the inner
products 〈Φu,Φv〉 between the measurement of vectors u,v.
Such techniques depend on 〈Φu,Φv〉 being close to 〈u,v〉.
Saturation can induce unbounded errors in 〈Φu,Φv〉, making
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it arbitrarily far away from 〈u,v〉. Thus, by discarding satu-
rated measurements, the error between these inner products is
bounded.

C. Recovery via convex optimization with consistency con-
straints

Clearly saturation rejection discards potentially useful infor-
mation. Thus, in our second approach, we include saturated
measurements, but treat them differently from the others by
enforcing consistency. Consistency means that we constrain
the recovered signal x̂ so that the magnitudes of the values of
Φx̂ corresponding to the saturated measurements are greater
than G.

Specifically, let S+ and S− correspond be the sets of indices
of the positive saturated measurements, and negative saturated
measurements, respectively. We define the matrix Φ̊ as

Φ̊ :=

[
ΦS+

−ΦS−

]
. (5)

We obtain an estimate x̂ via the program,

x̂ = argmin
x
‖x‖1 s.t. ‖Φ̃x− ỹ‖2 < ε (6a)

and Φ̊x ≥ G · 1, (6b)

where 1 denotes an (M − M̃) × 1 vector of ones. In words,
we are looking for the x with the minimum `1 norm such
that the measurements that do not saturate have bounded `2
error, and the measurements that do saturate are consistent
with the saturation constraint. Alternative regularization terms
that impose the consistency requirement on the unsaturated
quantized measurements can be used on ỹ, such as those pro-
posed in [16, 17], or alternative techniques for the unsaturated
quantized measurements can be used such as those proposed
in [18]. In some hardware systems, the measurements that
are acquired following a saturation event can have higher
distortion than the other unsaturated measurements. This is a
physical effect of some quantizers and may happen when the
sample rate is high. In this case, an additional `2 constraint,
‖Φ̃?x−ỹ?‖2 < ε1, can be applied where ? denotes the indices
of the measurements immediately following a saturation event
and where ε1 > ε. The measurements ỹ? can be determined
via measured properties of the physical system.

D. Recovery via greedy algorithms with consistency con-
straints

Greedy algorithms can also be modified to include a sat-
uration constraint. One example of a greedy algorithm that
is typically used for sparse recovery is CoSaMP [30]. In
this subsection, we introduce Saturation Consistent CoSaMP
(SC-CoSaMP), a modified version of CoSaMP that performs
consistent reconstruction with saturated measurements.

CoSaMP estimates the signal x̂ by finding a coefficient
support set Ω and estimating the signal coefficients over that
support. The support is found in part by first computing a
vector p = ΦT (y −Φx̂), that allows us to infer large signal
coefficients, and hence is called the proxy vector [30], and

Algorithm 1 SC-CoSaMP greedy algorithm
1: Input: y, Φ, and K
2: Initialize: x̂[0] ← 0, n← 0
3: while not converged do
4: Compute proxy:

p← Φ̃T
(
ỹ − Φ̃x̂[n]

)
+ Φ̊T

(
G · 1− Φ̊x̂[n]

)
+

5: Update coefficient support:
Ω← union of

• support of largest 2K coefficients from p
• support of x̂[n]

6: Estimate new coefficient values:
x̂[n+1] ← argminx ‖ỹ− Φ̃Ωx‖22 + ‖(G ·1− Φ̊Ωx)+‖22

7: Prune:
x̂[n+1] ← keep largest K coefficients of x̂[n+1]

8: n← n+ 1
9: end while

second, by choosing the support of the largest 2K elements
of p. These 2K support locations are merged with the support
corresponding to the largest K coefficients of x̂ to produce Ω.
Given Ω, CoSaMP estimates the signal coefficients by solving
the least squares problem:

x̂ = min
x
‖ΦΩx− y‖22. (7)

These steps are done successively until the algorithm con-
verges.

We modify two steps of CoSaMP to produce SC-CoSaMP;
the proxy step and the coefficient estimate step. When comput-
ing the proxy vector, SC-CoSaMP enforces consistency from
the contribution of the saturated measurements. When estimat-
ing the coefficients, a constraint on the saturated measurements
is added to (7).

The steps of SC-CoSaMP are displayed in Algorithm 1.
In steps 1 and 2, the algorithm initializes by choosing an
estimate x̂[0] = 0, an N -dimensional vector of zeros, where
the superscript [·] denotes iteration. To recover K coefficients,
the algorithm loops until a condition in step 3 is met. For each
iteration n, the algorithm proceeds as follows:

The proxy vector is computed in step 4. This is accom-
plished by computing the sum of two proxy vectors; a proxy
from ỹ and a proxy that uses the supports of the saturated
measurements. To compute the proxy from ỹ, we repeat the
same computation as in CoSaMP, Φ̃T (ỹ− Φ̃x̂[n]), where the
superscript T denotes the matrix transpose. To compute the
proxy from the support of the measurements that saturated,
we introduce the saturation residual, denoted as G ·1−Φ̊x̂[n].
This vector measures how close the elements of Φ̊x̂ are to G.
In consistent reconstruction, the magnitude of the elements
of Φ̊x̂ should be greater than or equal to G, however, once
these are greater than G, the magnitude given by the saturation
residual cannot be effectively interpreted.

Thus, consistency is achieved by applying a function that
selects the positive elements of the saturation residual,

(yi)+ =
{

0, yi < 0
yi, yi ≥ 0, (8)
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where the function is applied element-wise when operating on
a vector.

By combining the proxies from ỹ and the saturated mea-
surement supports, the proxy vector of step 4 is

p = Φ̃T
(
ỹ − Φ̃x̂[n]

)
+ Φ̊T

(
G · 1− Φ̊x̂[n]

)
+
. (9)

In this arrangement, the elements of Φ̊x̂ that are below G
will contribute new information to p, however, elements that
are greater than G will be set to zero, and therefore do not
contribute additional information to p. We note that a similar
computation can be made in the IHT algorithm [31].

In step 5, the new coefficient support Ω is found by taking
the union of the support of the largest 2K coefficients of p
and the support of x̂[n]. This results in a support set Ω with
at most 3K elements. This step ensures that if coefficients
were incorrectly chosen in a previous iteration, they can be
replaced.

In step 6 new coefficient values are estimated by finding
the x that minimizes ‖ΦΩx − y‖22. Thus in CoSaMP, new
coefficient values are estimated via Φ†Ωy, where † denotes the
Moore-Penrose pseudo-inverse, i.e., Φ†Ω = (ΦT

ΩΦΩ)−1ΦT
Ω.

We reformulate this step to include the saturation constraint.
Specifically, step 6 of SC-CoSaMP finds the solution to

x̂[n+1] ← argmin
x
‖ỹ − Φ̃Ωx‖22 + ‖(G · 1− Φ̊Ωx)+‖22 (10)

This can be achieved via gradient descent or other optimization
techniques. By employing a one-sided quadratic we ensure a
soft application of the constraint and ensure the program is
feasible even in the presence of noise [36].

In step 7, we keep the largest K coefficients of the signal
estimate. The algorithm repeats until a convergence condition
is met.

As demonstrated, SC-CoSaMP is different from CoSaMP
in steps 4 and 6. In practice, we have found that applying
step 4 of SC-CoSaMP to compute p provides a significant
increase in performance over the equivalent step in CoSaMP,
while applying step 6 for coefficient estimation provides only
a marginal performance increase.

IV. RANDOM MEASUREMENTS AND DEMOCRACY

A. Democracy and recovery

In this section, we demonstrate that the random measure-
ment schemes typically advocated in CS are democratic, i.e.,
each measurement contributes a similar amount of information
about the signal x to the compressed representation y [37–
39].1 The fact that random measurements are democratic
seems intuitive; when using random measurements, each mea-
surement is a randomly weighted sum of a large fraction
(or all) of the coefficients of x, and since the weights are
chosen independently at random, no preference is given to any
particular set of coefficients. More concretely, suppose that the

1The original introduction of this term was with respect to quantization [37,
38], i.e., a democratic quantizer would ensure that each bit is given “equal
weight.” As the CS framework developed, it became empirically clear that
CS systems exhibited this property with respect to compression [39].

measurements y1, y2, . . . , yM are independent and identically
distributed (i.i.d.) according to some distribution fY , as is the
case for the Φ considered in this paper. Now suppose that we
select M̃ < M of the yi at random (or according to some
procedure that is independent of y). Then we are left with
a length-M̃ measurement vector ỹ such that each ỹi ∼ fY .
Stated another way, if we set D = M − M̃ , then there is no
difference between collecting M̃ measurements and collecting
M measurements and deleting D of them, provided that this
deletion is done independently of the actual values of y.

However, following this line of reasoning will ultimately
lead to a rather weak definition of democracy. To see this,
consider the case where the measurements are deleted by an
adversary. Since by adaptively deleting the entries of y one
can change the distribution of ỹ, the adversary can delete the
D largest elements of y, thereby skewing the distribution of
ỹ. In many cases, especially if the same matrix Φ will be used
repeatedly with different measurements being deleted each
time, it would be far better to know that any M̃ measurements
will be sufficient to robustly reconstruct the signal. This is a
significantly stronger requirement.

The RIP also provides us with a way to quantify our notion
of democracy.

Definition 2. Let Φ be and M ×N matrix, and let M̃ ≤M
be given. We say that Φ is (M̃,K, δ)-democratic if for all Γ
such that |Γ| ≥ M̃ the matrix ΦΓ satisfies the RIP of order
K with constant δ.

If Φ is (M̃, 2K, δ)-democratic, then both approaches de-
scribed in Section III will recover sparse and compressible
signals. In particular, the democracy property implies that
any M̃ × N submatrix of Φ has RIP, and in particular that
Φ̃ satisfies the RIP. Thus, if δ <

√
2 − 1, it immediately

follows from Theorem 1 that the rejection approach (4) yields
a recovered signal that satisfies (1) whenever the number of
unsaturated measurements exceeds M̃ . Furthermore, under the
same conditions, we also have that (6) yields a recovered
signal (1). This can be seen by observing that the proof of
Theorem 1 in [29] essentially depends on only three facts:
(i) that the original signal x is in the feasible set, so that
we can conclude (ii) that ‖x̂‖1 ≤ ‖x‖1, and finally (iii) that
‖Φx̂ − Φx‖2 ≤ ε, where Φ can be any matrix that satisfies
the RIP of order 2K with constant δ <

√
2 − 1. Since Φ is

democratic we have that (iii) holds for Φ̃ regardless of whether
we incorporate the additional constraints. Since the original
signal x will remain feasible in (6), (i) and (ii) will also hold.

Note that the two approaches will not necessarily produce
the same solution. This is because the solution from the
rejection approach may not lie in the feasible set of solutions
of the consistent approach (6). However, the reverse is true.
The solution to the consistent approach does lie in the feasible
set of solutions to the rejection approach. While we do not
provide a detailed analysis that compares the performance of
these two approaches, we expect that the consistent approach
will outperform the rejection approach since it incorporates
additional information about the signal. We provide experi-
mental confirmation of this in Section V.

We now demonstrate that certain randomly generated ma-
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trices are democratic. While the theorem actually holds (with
different constants) for the more general class of sub-Gaussian
matrices, for simplicity we restrict our attention to Gaussian
matrices.

Theorem 2. Let Φ by an M × N matrix with elements φij
drawn according to N (0, 1/M) and let M̃ ≤ M , K < M̃ ,
and δ ∈ (0, 1) be given. Define D = M − M̃ . If

M = C1(K +D) log
(
N +M

K +D

)
, (11)

then with probability exceeding 1− 3e−C2M we have that Φ
is (M̃,K, δ/(1 − δ))-democratic, where C1 is arbitrary and
C2 = (δ/8)2 − log(42e/δ)/C1.

Proof: Our proof consists of two main steps. We begin
by defining the M × (N +M) matrix A = [I Φ] formed by
appending Φ to the M ×M identity matrix. Theorem 1 from
[22] demonstrates that under the assumptions in the theorem
statement, with probability exceeding 1 − 3e−C2M we have
that A satisfies the RIP of order K + D with constant δ.
The second step is to use this fact to show that all possible
M̃ × N submatrices of Φ satisfy the RIP of order K with
constant δ/(1− δ).

Towards this end, we let Γ ⊂ {1, 2, . . . ,M} be an arbitrary
subset of rows such that |Γ| ≥ M̃ . Define Λ = {1, 2, . . . ,M}\
Γ and note that |Λ| = D. Additionally, let

PΛ , AΛA
†
Λ, (12)

be the orthogonal projector onto R(AΛ), i.e., the range, or
column space, of AΛ. Furthermore, we define

P⊥Λ , I−PΛ, (13)

as the orthogonal projector onto the orthogonal complement
of R(AΛ). In words, this projector nulls the columns of
A corresponding to the index set Λ. Now, note that Λ ⊂
{1, 2, . . . ,M}, so AΛ = IΛ. Thus,

PΛ = IΛI†Λ = IΛ(ITΛIΛ)−1ITΛ = IΛITΛ = I(Λ),

where we use I(Λ) to denote the M×M matrix with all zeros
except for ones on the diagonal entries corresponding to the
columns indexed by Λ. (We distinguish the M ×M matrix
I(Λ) from the M × D matrix IΛ — in the former case we
replace columns not indexed by Λ with zero columns, while in
the latter we remove these columns to form a smaller matrix.)
Similarly, we have

P⊥Λ = I−PΛ = I(Γ).

Thus, we observe that the matrix P⊥ΛA = I(Γ)A is simply the
matrixA with zeros replacing all entries on any row i such that
i /∈ Γ, i.e., (P⊥ΛA)Γ = AΓ and (P⊥ΛA)Λ = 0. Furthermore,
Theorem X from [40] states that for A satisfying the RIP of
order K +D with constant δ, we have that(

1− δ

1− δ

)
‖u‖22 ≤ ‖P⊥ΛAu‖22 ≤ (1 + δ)‖u‖22, (14)

holds for all u ∈ RN+M such that ‖u‖0 = K + D −
|Λ| = K and supp(u) ∩ Λ = ∅. Equivalently, letting

Λc = {1, 2, . . . , N +M}\Λ, this result states that (I(Γ)A)Λc

satisfies the RIP of order K with constant δ/(1 − δ). To
complete the proof, we note that if (I(Γ)A)Λc satisfies the
RIP of order K with constant δ/(1−δ), then we trivially have
that I(Γ)Φ also has the RIP of order at least K with constant
δ/(1−δ), since I(Γ)Φ is just a submatrix of (I(Γ)A)Λc . Since
‖I(Γ)Φx‖2 = ‖ΦΓx‖2, this establishes the theorem.

B. Robustness and stability

Observe that we require roughly O(D log(N)) additional
measurements to ensure that Φ is (M̃,K, δ)-democratic com-
pared to the number of measurements required to simply
ensure that Φ satisfies the RIP of order K. This seems
intuitive; if we wish to be robust to the loss of any D mea-
surements while retaining the RIP of order K, then we should
expect to take at least D additional measurements. This is not
unique to the CS framework. For instance, by oversampling,
i.e., sampling faster than the minimum required Nyquist rate,
uniform sampling systems can also improve robustness with
respect to the loss of measurements. Reconstruction can be
performed in principle on the remaining non-uniform grid, as
long as the remaining samples satisfy the Nyquist range on
average [41].

However, linear reconstruction in such cases is known to
be unstable. Furthermore the linear reconstruction kernels are
difficult to compute. Under certain conditions stable non-
linear reconstruction is possible, although this poses further
requirements on the subset set of samples that can be lost and
the computation can be expensive [42]. For example, dropping
contiguous groups of measurements can be a challenge for the
stability of the reconstruction algorithms. Instead, the demo-
cratic principle of CS allows dropping of an arbitrary subset D
of the measurements without compromising the reconstruction
stability, independent of the way these measurements are
chosen.

In some applications, this difference may have significant
impact. For example, in finite dynamic range quantizers, the
measurements saturate when their magnitude exceeds some
level. Thus, when uniformly sampling with a low saturation
level, if one sample saturates, then the likelihood that any of
the neighboring samples will saturate is high, and significant
oversampling may be required to ensure any benefit. However,
in CS, if many adjacent measurements were to saturate, then
for only a slight increase in the number of measurements we
can mitigate this kind of error by simply rejecting the saturated
measurements; the fact that Φ is democratic ensures that this
strategy will be effective.

Theorem 2 further guarantees graceful degradation due
to loss of samples. Specifically, the theorem implies that
reconstruction from any subset of CS measurements is stable
to the loss of a potentially larger number of measurements
than anticipated. To see this, suppose that and M ×N matrix
Φ is (M − D,K, δ)-democratic, but consider the situation
where D + D̃ measurements are dropped. It is clear from
the proof of Theorem 2 that if D̃ < K, then the resulting
matrix ΦΓ will satisfy the RIP of order K − D̃ with constant
δ. Thus, from [43], if we define K̃ = (K − D̃)/2, then the
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reconstruction error is then bounded by

‖x− x̂‖2 ≤ C3

‖x− x eK‖1√
K̃

, (15)

where x eK denotes the best K̃-term approximation of x and C3

is an absolute constant depending on Φ that can be bounded
using the constants derived in Theorem 2. Thus, if D̃ is
small then the additional error caused by dropping too many
measurements will also be relatively small. To our knowledge,
there is simply no analog to this kind of graceful degradation
result for uniform sampling with linear reconstruction. When
the number of dropped samples exceeds D, there is are no
guarantees as to the accuracy of the reconstruction.

V. EXPERIMENTAL VALIDATION

In the previous sections, we discussed three approaches
for recovering sparse signals from finite-range, quantized CS
measurements;

1) the conventional approach, scaling the signal so that
the saturation rate is zero and reconstructing with the
program (3);

2) the rejection approach, discarding saturated measure-
ments before reconstruction with (4); and

3) the consistent approach, incorporating saturated measure-
ments as a constraint in the program (6).

In this section we compare these approaches via a suite
of simulations to demonstrate that, on average, using the
saturation constraint outperforms the other approaches for a
given saturation level G. Our main findings include:
• In many cases the optimal performance for the consistent

and rejection approaches is superior to the optimal per-
formance for the conventional approach and occurs when
the saturation rate is nonzero.

• The difference in optimal performance between the con-
sistent and rejection approaches is small for a given ratio
of M/N .

• The consistent reconstruction approach is more robust
to saturation than the rejection approach. Also, for a
large range of saturation rates, consistent reconstruction
outperforms the conventional approach even if the latter
is evaluated under optimal conditions.

We find these behaviors for both sparse and compressible sig-
nals and for both optimization and greedy recovery algorithms.

A. Experimental setup

Signal model: We study the performance of our approaches
using two signal classes:
• K-sparse: in each trial, K nonzero elements xn are

drawn from an i.i.d. Gaussian distribution and where the
locations n are randomly chosen;

• weak `p-compressible: in each trial, elements xn are first
generated according to

xn = vnn
−1/p, (16)

for p ≤ 1 where vn is a ±1 Rademacher random variable.
The positions n are then permuted randomly.

Once a signal is drawn, it is normalized to have unit `2 norm.
Aside from quantization we do not add any additional noise
sources.

Measurement matrix: For each trial a measurement matrix
is generated using an i.i.d. Gaussian distribution with variance
1/M . Our extended experimentation, not shown here in the
interest of space, demonstrates consistent results across a
variety of measurement matrix classes including i.i.d. ±1
Rademacher matrices and other sub-Gaussian matrices, as well
as the random demodulator and random time-sampling.

Reconstruction metric: We report the reconstruction
signal-to-noise ratio (SNR) in decibels (dB):

SNR , 10 log10

(
‖x‖22
‖x− x̂‖22

)
, (17)

where x̂ denotes the reconstructed signal.

B. Reconstruction SNR: K-sparse signals

We compare the reconstruction performance of the three
approaches by applying each to the same set of measurements.
We fix the parameters, N = 1024, K = 20, and B = 4
and vary the saturation level parameter G over the range
[0, 0.4]. We varied the ratio M/N in the range [1/16, 1] but
plot results for only the three ratios M/N = 2/16, 6/16,
and 15/16 that exhibit typical behavior for their regime. For
each parameter combination, we performed 100 trials, and
computed the average performance. The results were similar
for other parameters, thus those experiments are not displayed
here.

The experiments were performed as follows. For each trial
we draw a new sparse signal x and a new matrix Φ according
to the details in Section V-A and compute y = Φx. We
quantize the measurements using a quantizer with saturation
level G and then use them to reconstruct the signal using the
three approaches described above. The reconstructions were
performed using CVX [44, 45], a general purpose optimization
package.

Figures 3(a), 3(b), and 3(c) display the reconstruction SNR
performance of the three approaches in dB for M/N = 2/16,
M/N = 6/16, M/N = 15/16, respectively. The solid line
depicts the conventional approach, the dashed line depicts the
rejection approach, and the dotted line depicts the consistent
approach. Each of these lines follow the scale on the left y-
axis. The dashed-circled line denotes the average saturation
rate, (M − M̃)/M , and correspond to the right y-axis. In
Figure 3(a), the three lines meet at G = 0.25, as expected,
because the saturation rate is effectively zero at this point.
This is the operating point for the conventional approach
and is the largest SNR value for the solid line. In this case,
only the consistent approach obtains SNRs greater than the
conventional approach. In Figure 3(b), the three lines meet at
G = 0.15. Both the consistent and the rejection approaches
achieve their optimal performance at around G = 0.1, where
the saturation rate is 0.09. In Figure 3(c), the three lines meet
at G = 0.1 and both the consistent and rejection approaches
achieve their optimal performance at G = 0.06.
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(a) M/N = 2/16 (b) M/N = 6/16 (c) M/N = 15/16
Fig. 3. Comparison of reconstruction approaches using CVX for K-sparse signals with N = 1024, K = 20, and B = 4. Solid line depicts reconstruction
for the conventional approach. Dotted line depicts reconstruction for the consistent approach. Dashed line depicts reconstruction for the rejection approach.
The left y-axis corresponds to each of these lines. The dashed-circled line represents the average saturation rate and corresponds to the right y-axis. Each plot
represents a different measurement regime: (a) low M/N = 2/16, (b) medium M/N = 6/16, and (c) high M/N = 15/16.
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(a) p = 0.4 (b) p = 0.8 (c) p = 1

Fig. 4. Comparison of reconstruction approaches using CVX for weak `p compressible signals with N = 1024, M/N = 6/16, and B = 4. Solid line
depicts reconstruction for the conventional approach. Dotted line depicts reconstruction for the consistent approach. Dashed line depicts reconstruction for the
rejection approach. The left y-axis corresponds to each of these lines. The dashed-circled line represents the average saturation rate and corresponds to the
right y-axis. Each plot represents different rate of decay for the coefficients: (a) fast decay p = 0.4, (b) medium decay p = 0.8, and (c) slow decay p = 1.

The implications of this experiment are threefold: First, the
saturation constraint offers the best approach for reconstruc-
tion. Second, if the signal is very sparse or there is an excess
of measurements, then saturated measurements can be rejected
with negligible loss in performance. Third, if given control
over the parameter G, then the quantizer should be tuned to
operate with a positive saturation rate.

C. Reconstruction SNR: Compressible signals

In addition to sparse signals, we also compare the recon-
struction performance of the three approaches with compress-
ible signals. As in the strictly sparse experiments, we use CVX
for reconstruction. Similar to the sparse reconstruction exper-
iments, we choose the parameters, N = 1024, M/N = 6/16,
and B = 4 and vary the saturation level parameter G over the
range [0, 0.4]. The decay parameter p is varied in the range
[0.4, 1], but we will discuss only three decays p = 0.4, 0.8, and
1. Some signals are known to exhibit p in (16) in this range,
for instance, it has been shown that the wavelet coefficients of
natural images have decay rates between p = 0.3 and p = 0.7
[46]. For each parameter combination, we perform 100 trials,
and compute the average performance. The experiments are
performed in the same fashion as with the sparse signals.

For signals with smaller p, fewer coefficients are needed to
approximate the signals with low error. This also implies that
fewer measurements are needed for these signals. The plots

in Figure 4 reflect this intuition. Figures 4(a), 4(b), and 4(c)
depict the results for p = 0.4, p = 0.8, and p = 1, respectively.
The highest SNR for p = 0.4 is achieved at a saturation rate
of 17%, while for p = 0.8 the saturation rate can only be
13%, and for p = 1 the highest SNR occurs at a saturation
rate of 5%. This means that the smaller the p, the more the
measurements should be allowed to saturate.

D. Robustness to saturation

We also compare the optimal performance of the rejection
and consistent reconstruction approaches. First, we find the
maximum SNR versus M/N for these approaches and demon-
strate that their difference is small. Second, we determine
the robustness to saturation of each approach. Because these
experiments require many more trials than in the previous
experiments, we use SC-CoSaMP from Section III-D for
the consistent approach and CoSaMP for the rejection and
conventional approaches.

We experimentally measure, by tuning G, the best SNR
achieved on average for the three strategies. The experiment
is performed as follows. Using the same parameters as in
the K-sparse experiments, for each value of M and for each
approach, we search for the saturation level G that yields the
highest average SNR and report this SNR. This is equivalent
to finding the maximum point on each of the curves of each
plot in Figure 3 but over a larger range of M .
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Fig. 5. SNR performance using SC-CoSaMP for N = 1024, K = 20, and
B = 4. (a) Best-achieved average SNR vs. M/N . (b) Maximum saturation
rate such that average SNR performance is as good or better than the best
average performance of the conventional approach. For best-case saturation-
level parameters, the rejection and constraint approaches can achieve SNRs
exceeding the conventional SNR performance by 20dB. The best performance
between the reject and consistent approaches is similar, differing only by 3dB,
but the range of saturation rates for which they achieve high performance is
much larger for the consistent approach. Thus, the consistent approach is more
robust to saturation.

Figure 5(a) depicts the results of this experiment. The
solid curve denotes the best performance for the conventional
approach; the dashed curve denotes the performance with satu-
ration rejection; and the dotted curve denotes the performance
with the constraint. For these parameters, in the best case,
saturation rejection can improve performance by 20dB, and
the saturation constraint can improve performance over the
conventional case by 23dB.

There are two important implications from this experiment.
First, when the number of measurements exceeds the minimum
required number of measurements, then intentionally saturat-
ing measurements can greatly improve performance. Second,
in terms of the maximum SNR, the consistent approach
performs only marginally better than the rejection approach,
assuming that the quantizer operates under the optimal satu-
ration conditions for each approach.

In practice it may be difficult to efficiently determine or
maintain the saturation level that achieves the maximum SNR.
In those cases, it is beneficial to know the robustness of
each approach to changes in the saturation rate. Specifically,
we compare the range of saturation rates for which the two
approaches outperform the conventional approach when the
latter is operating under optimal conditions.

This experiment first determines the maximum SNR
achieved by the conventional approach (i.e., the solid curve
in Figure 5(a)). Then, for the other approaches, we increase
the saturation rate by tuning the saturation level. We continue

Quantizer

Compute
++

AGC

Fig. 6. Automatic gain control (AGC) for tuning to nonzero saturation rates
in CS systems.

to increase the saturation rate until the SNR is lower than the
best SNR of the conventional approach.

The results of this experiment are depicted in Figure 5(b).
The dashed line denotes the range of saturation rates for
the rejection approach and the dotted line denotes the range
of saturation rates for the consistent approach. At best, the
rejection approach achieves a range of [0, 0.6] while the
consistent approach achieves a range of [0, 0.9]. Thus, these
experiments show that the consistent approach is more robust
to saturation rate.

VI. EXTENSIONS

A. Automatic gain control (AGC) for CS

Most CS reconstruction approaches (with the exception
of [47]) consider finite-length signals x. However, in many
applications of CS the measured signal is a time-varying,
streaming signal of length unknown in advance. To apply CS
methods to such applications, a blocking approach is usually
pursued. The signal is split into blocks and each block is
compressively sampled and reconstructed separately from the
other blocks. In such streaming applications, the signal power
does not remain constant but changes throughout the operation
of the system and from block to block. Such changes affect
the performance, especially in terms of Signal-to-Quantization
noise level and saturation rate.

To adapt to changes in signal power and to avoid satura-
tion events, modern sampling systems employ automatic gain
control (AGC). These AGC’s typically target saturation rates
that are close to zero. In this case, saturation events can be
used to detect high signal strength; however detecting low
signal strength is more difficult. Thus, in conventional systems,
saturation rate alone does not provide sufficient feedback
to perform automatic gain control. Other measures, such as
measured signal power are used in addition to saturation rate
to ensure that the signal gain is sufficiently low but not too
low.

In this section we demonstrate that in a CS system, where a
positive saturation rate is desirable, the saturation rate can by
itself provide sufficient feedback to the AGC circuit. Since the
desired rate is significantly greater than zero, deviation from
the desired rate can be used to both increase and decrease the
gain in an AGC circuit to maintain a target saturation rate.
Saturation events can be detected more easily and at earlier
stages of the signal acquisition systems compared to measures
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Fig. 7. CS AGC in practice. (a) CS measurements with no saturation.
Signal strength drops by 90% at measurement 900. (b) Output gain from
AGC. (c) Measurements scaled by gain from AGC. (d) Saturation rate of
scaled measurements. This figure demonstrates that the CS AGC is sensitive
to decreases in signal strength.

such as the signal variance. Thus the effectiveness of AGC
increases and the cost decreases.

Our setup is as follows. The signal x is split into consecutive
blocks of length N , and Φ is applied to each block separately
such that there are M measurements per block. We index
each successive block of measurements by w and denote this
with the superscript [·]. In this example we apply a boxcar
window to each block of x, but in general any window
can be applied. For each block, a gain θ[w] is applied to
the measurements and then quantized, resulting in a set of
M output measurements R{θ[w]y[w]}. Note that in different
hardware implementations, the gain might be applied before,
after, or within the measurement matrix Φ; this change does
not fundamentally affect our design. Our goal is to tune the
gain so that it produces a desired measurement saturation rate
s. We also assume that the signal energy does not deviate
significantly between consecutive blocks.

A simple AGC that uses saturation rate to tune the gain is
depicted in Figure 6 and operates as follows. We compute the
saturation rate of the previous block of measurements, ŝ[w−1],
after quantization. The new gain is then computed by adding
the error between s and ŝ[w−1] to the previous gain, i.e.,

θ[w] = θ[w−1] + ν(s− ŝ[w−1]), (18)

where ν > 0 is constant. This negative feedback system is
BIBO2 stable for any finite positive ν with 0 < s < 1 [48].

To demonstrate that this AGC is sensitive to both in-
creases in signal strength as well as decreases, we perform

2BIBO = Bounded Input Bounded Output

an experiment where the signal strength drops suddenly and
significantly. The experiment is depicted in Figure 7 and was
performed as follows. We generated a signal such that the
parameters per block were N = 512, K = 5, and M = 32.
We generated 63 blocks resulting in approximately 2000
measurements in total. The example measurements before the
AGC is applied are depicted in Figure 7(a). The dashed lines
represent the quantizer range [−1, 1]. We have generated the
measurements so that the saturation rate is zero, and starting
at measurement 900, the signal strength drops by 90%. These
measurements are input into the AGC previously described
with ν = 12 and we set a desired saturation rate of s = 0.2.

Figure 7(b) shows the gain that the AGC applies as it
receives each measurement. Figure 7(c) shows the resulting
output signal with quantizer range, and Figure 7(d) shows the
estimated output saturation rate. Initially, we achieve the de-
sired saturation rate of 0.2 within approximately 10 iterations.
The system adapts to the sudden change in signal strength
after measurement 900 within approximately 500 iterations.
This experiment demonstrates that the saturation rate is by
itself sufficient to tune the gain of CS systems.

Of course more elaborate gain update loops can be consid-
ered to provide better adaptability and more rapid updates to
the gain from block to block. Such methods are beyond the
scope of this paper.

VII. DISCUSSION

In this paper, we have presented two new approaches for
handling unbounded saturation errors on compressive mea-
surements; rejecting saturated measurements and applying
consistency constraints to saturated measurements. We also
proposed a greedy algorithm for the latter approach. Both
approaches exploit the democracy property of measurements
from randomized measurement systems. These approaches are
not limited to time-varying signals, for example, they can be
used with the single-pixel camera [10].

In our experimental results, we find that the given enough
initial measurements, the rejection and consistent approaches
outperform the conventional approach for quantization with
saturation. We also find that best performance in these new
methods occurs when the saturation rate is nonzero, implying
that the gain for CS systems should be tuned to have a positive
saturation rate, even when the distribution of the input and the
sampling matrix ensures that the measurements are bounded
and saturation can be avoided.

Our reconstruction approaches are not limited to quantiza-
tion with saturation. Any application where highly corrupted
measurements can be easily detected can employ similar
techniques to those described in this paper. For instance,
some sensors such as the photo-diode used in the single-
pixel camera [10], have a linear regime that produces low
distortion measurements and a non-linear regime that produces
high distortion measurements.

Beyond proposing and demonstrating the benefits of our
approaches, we also proved the claim that CS measurements
are M̃ -democratic for a large class of random matrices. This
means that once a M × N matrix is drawn, every M̃ × N
submatrix has the RIP.
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The democracy property has applications that extend beyond
the scope of this paper. For instance, it can be used to
show that CS measurements are robust to erasure channels
when using a similar transmission methodology as fountain
codes [49] or when applying CS as an multiple description
coding (MDC) [50] code.
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