
Sparse MIMO Architectures For Through-The-Wall Imaging
Li Li∗, Petros T. Boufounos†, Dehong Liu†, Hassan Mansour†, and Zafer Sahinoglu†

∗Department of Electrical and Computer Engineering, Duke University, Durham, NC
†Mitsubishi Electric Research Laboratories (MERL), Cambridge, MA

Abstract—Compressive sensing and sparse array processing has pro-
vided new approaches to improve radar imaging systems. This paper,
explores the potential of sparse Multiple-Input-Multiple-Output (MIMO)
radar arrays to significantly reduce the cost of through-the-wall imaging
(TWI). We analyze three well-known sparse array structures—nested
arrays, co-prime arrays and random arrays—and examine their perfor-
mance in the presence of common types of layered walls. The reconstruc-
tion is performed by formulating and solving a wall parameter estimation
problem in conjunction with a sparse reconstruction problem that takes
the wall parameters into account. Our simulation results demonstrate
the effectiveness of our approach and validate the performance of the
system for the three different MIMO sparse array structures.

Index Terms—Through-the-wall, MIMO sparse arrays, Sparse image
reconstruction, compressive sensing.

I. INTRODUCTION

The recent success of compressive sensing and other sub-Nyquist
sampling and acquisition methods has reinvigorated interest in sparse,
undersampled radar arrays [1]–[3]. These arrays enable radar signal
acquisition and imaging using significantly fewer array elements
compared to conventional array structures, thus significantly reducing
the array implementation cost.

Sparse arrays have average inter-element spacing much larger than
half the wavelength of the transmitted signal, which is the Nyquist
interval for array processing. This is achieved using non-uniform
element spacing, which eliminates fundamentally unresolvable am-
biguities, known as grating lobes. While classical algorithms have
been used in the past to recover the acquired image, they suffer from
the increased sidelobes exhibited by those arrays. However, recently
developed sparse recovery algorithms are robust to sidelobes, thus
enabling imaging using significantly fewer array elements.

In this work, we explore the application of sparse Multi-Input-
Multi-Output (MIMO) arrays and Compressive Sensing (CS) for
through-the-wall imaging (TWI). MIMO architectures exhibit re-
duced array gain due to waveform diversity, yet they provide finer
spatial resolution, more degrees of freedom, improved performance in
parameter identifiability, and multipath rejection [4], [5]. Most work
on CS-based TWI modifies the acquisition hardware [6], [7]. Instead,
similar to [8], we use sparse arrays to reduce the acquisition cost.

Specifically, this paper explores and compares three well-known
sparse array structures: co-prime [9], nested [10] and uniformly
random arrays [3], in the presence of layered lossless walls. Under
the assumption that the imaged scene is sparse, we analyze imaging
performance of different sparse array architectures and wall profiles
in terms of mainlobe and sidelobe structure, i.e., by examining the
characteristics of the point spread function (PSF). The PSF, known as
beampattern in the array literature, is intimately related to the mutual
coherence in the context of the sparse recovery literature [11]. The
PSF characteristics provide good intuition on the performance of the
array both under conventional and sparse reconstruction algorithms.

Since the increased sidelobe levels of the proposed architectures
decrease the performance of conventional imaging algorithms, we
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Fig. 1. Sparse array structures (top) and sample corresponding beampatterns
(bottom): co-prime (left) and nested arrays (right). Blue shows the transmitted,
red shows the received, and black shows the total product beampatterns.

use sparse reconstruction approaches to exploit the sparsity of the
scene of interest. In particular, we apply Iterative Hard Thresholding
(IHT) [12]—a well-established greedy-based sparse signal recovery
algorithm—to estimate the reflectivity map behind the wall. Further-
more, we develop an algorithm to estimate the parameters of the wall
profile from the received data. These parameters are used to develop
imaging operators necessary in the reconstruction algorithm.

II. TWI SIGNAL MODEL

In this work, we assume a 2D imaging scenario, where the MIMO
radar array is located at the origin with a d0 standoff distance from
the wall. The positions of the Mt transmitter (Tx) and Mr receiver
(Rx) elements are denoted using ti, i = 1, . . . ,Mt and ri, i =
1, . . . ,Mr , respectively. Using the point target approximation, the
received scattered field in the frequency domain, excluding effects of
direct wall reflections and additive observation noise, equals [13]:

y(t, r, ω) ∼=
∫
S

s(p)w(ω)g(r,p, ω)g(t,p, ω)dp. (1)

In (1), w(ω) represents the frequency signature of the transmitted
radar waveform, s(p) denotes the reflectivity of the object of interest
located at p = (x, y), and S denotes the surveyed region. The
function g(p1,p2, ω) denotes the Green’s function for a layered
medium from point p1 to p2 [14], which is a function of the
thickness, d, and relative permittivity, ε, of the wall, and incorporates
the multiple reflections due to the wall [15].

To discretize the system, we divide the observed region S using a
grid of P points, and represent the complex reflectivity of the map
using s ∈ C(P×1). Assuming N frequency samples are obtained at
each Rx element, the discretized version of (1) is given by:

y = Φs (2)
where

y = [y(t1, r1, ω1), y(t1, r1, ω2), . . . , y(tMt , rMr , ωN )]T , (3)
Φ = [φ1, φ2, . . . , φP ] ∈ C(MrMtN×P ), (4)

φi =


w(ω1)g(r1,pi, ω1)g(t1,pi, ω1)
w(ω2)g(r1,pi, ω2)g(t1,pi, ω2)

...
w(ωN )g(rMr ,pi, ωN )g(tMt ,pi, ωN )

 , (5)

where y, φi ∈ C(MrMtN×1) and Φ is the array manifold matrix.



III. SPARSE ARRAY DESIGN

A. Sparse Array Architectures

Our sparse array design starts with a notional grid of Mr and
Mt uniformly spaced possible Tx and Rx elements, respectively. We
subsample the grid according to each architecture—co-prime, nested
or random. Only a few grid points include actual Tx or Rx elements.

Co-prime arrays [14] are defined by a pair of co-prime numbers
M̃t and M̃r , for Tx and Rx arrays, respectively. The Tx array consists
of M̃t sensors with an inter-element spacing of M̃r grid units, while
the Rx array consists of M̃r elements with an inter-element spacing
of M̃t grid units, as shown in Fig. 1 (a). Nested arrays [16] also
comprise of two uniform linear arrays (ULA); the Tx array consists
M̃t sensors with spacing of one grid unit, while the Rx consists M̃r

elements with spacing of M̃t units, as shown in Fig. 1 (b). Random
arrays with the same aperture are designed by randomly selecting M̃t

Tx and M̃r Rx elements from each grid using a uniform distribution.
The optimal MIMO sparse nested array can be obtained by

maximizing the degrees of freedom M̃rM̃t, given the total number of
MIMO elements M̃r + M̃t. For a co-prime array, an additive prime
constraint should also be included. Examples of MIMO array beam
pattern for co-prime array and nested array with M̃r = 4 and M̃t =
5 are shown in Fig. 1(c) and (d), respectively.

The M̃r×M̃t sparse MIMO array can be considered a subsampling
of a Mr × Mt full MIMO array. This can be represented using
a subsampling matrix D ∈ {0, 1}M̃rM̃tN×MrMtN . Using Φ and
Φ̃ to denote the manifold matrices of the full and sparse arrays,
respectively, the acquisition function (2) for the sparse array becomes

ỹ = DΦs = Φ̃s, (6)
where ỹ denoting the subsampled received data.

B. Array Design Properties

When considering the properties of an array design, classical array
literature focuses on the PSF, or beampattern, of the array. Further-
more, it is well understood (e.g., see [1]) that the PSF, appropriately
normalized, is equivalent to the mutual coherence between columns
of the manifold matrix, a key property of interest in CS acquisition
systems. The coherence between two columns is defined as the
normalized inner product between them, whereas the coherence of
the matrix is defined as the maximum absolute value of this inner
product among all pairs of elements in the matrix [11].

µ
(
Φ̃
)

= max
i6=j

|φ̃Hj φ̃i|
‖φ̃i‖2‖φ̃j‖2

. (7)

A low matrix coherence µ
(
Φ̃
)

is sufficient but not necessary to
provide worst-case sparse reconstruction guarantees. On the other
hand, the coherence structure described by the PSF, Φ̃H φ̃i, provides
significantly more information about the performance of the array,
especially under classical algorithms, such as the resolution, the noise
and interference robustness, and the points in the observed area that
can potentially cause reconstruction ambiguities.

The figures of merit we consider are the mainlobe area (MLA)
and the maximum sidelobe level (MSL). The MLA is defined as the
area around a point in the scene for which the PSF is above a certain
level, typically −3dB. The MSL is defined as the highest level the
PSF reaches in its sidelobes, i.e., outside of the main lobe. The MLA
is a measure of the array resolution, since it represents the ambiguity
around a scene point. The MSL is a measure of the recoverability
of a particular scene point, since it measures the maximum mutual
coherence of that point with the other points in the scene.

IV. SCENE RECONSTRUCTION

A. Wall profile estimation

To compute the Green’s function in (1) it is necessary to know the
permitivity εl and the thickness dl, l = 1, . . . , L, for all L layers of
the layered wall. Since the wall is not known in advance, we estimate
these from the acquired data, assuming L is known.

Excluding self-coupling between Tx and Rx elements, the received
return from all Rx elements consists of multipath components from
each wall layer. We assume the bistatic Tx and Rx element are
separated by ∆ = ‖r − t‖ but share the same standoff distance
d0 from the wall. Using Snell’s law, the reflection from the lth layer
arrives with delay τl(∆), i.e.. time of arrival (TOA) equal to

τl(∆) =
2

c

l∑
i=1

εiri (8)

with
l∑
i=i

√
r2
i − d2

i =
∆

2
(9)

εi−1
r2
i−1 − d2

i−1

r2
i−1

= εi
r2
i − d2

i

r2
i

, i = 2, . . . , l (10)

where the ri is the one-way traveling distance within each layer.
Thus, the unknown wall parameters, collectively denoted using

θ = {ε1, . . . , εL, d1, . . . , dL}, can be obtained by minimizing the
mean squared error between the measured TOA of each reflection,
τl(∆), l = 1, . . . L and the predicted TOA τ̂l(∆, θ) given the wall
parameters from each layer:

θ = arg min
θ

L∑
l=1

M̃tM̃r∑
j=1

αj |τl(∆j)− τ̂l(∆j , θ)|2 (11)

where αj is the weight assigned to each Tx-Rx separation and M̃tM̃r

is the total number of Tx-Rx separations from the array. For limited
bandwidth or low SNR applications, more accurate TOA estimates
can be obtained using super-resolution or adaptive techniques [16].

B. Sparse Image Recovery

To recover the scene reflectivity ŝ from the measurements ỹ in (6)
we assume the scene is sparse and use standard CS techniques.
Specifically, we formulate the sparsity constrained minimization

ŝ = arg min
s
‖ỹ − Φ̃s‖22 s.t. ‖s‖0 ≤ K, (12)

where K is the maximum sparsity of s, i.e., the maximum number
of reflectors in the discretized scene. While in general the problem
is NP-hard, it can often be solved by relaxing the `0 norm to its `1
convex hull or using one of the many available greedy algorithms,
e.g., [12], [17], [18]. In this work we use Iterative Hard-thresholding
(IHT) [12], an iterative algorithm in which the sparse estimate ŝ

(t+1)
Ω

at iteration t is estimated using
ŝ
(t+1)
Ω = TK

(
ŝ
(t)
Ω + ηΦ̃H

(
ỹ − Φ̃ŝ(t)

))
, (13)

where η is a step size, and TK(·) is a hard thresholding operator that
preserves the K largest in magnitude components of its argument
and sets the remaining components to 0. We prefer the IHT because,
in our experiments, it provides a great balance of computational cost
and recovery performance compared to alternatives. It also allows
for greater adaptability to signal models using model-based CS [19].
The IHT can be further accelerated using techniques explored in detail
in [20], [21], e.g., by adapting the step-size selection in each iteration.

V. SIMULATION RESULTS

A. Evaluation of Array Designs

Our first set of experiments examines the PSF properties of the
array designs under consideration. Specifically, we consider a 5m×
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Fig. 2. Experimental setup to evaluate array designs
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Fig. 4. Evaluation of array properties for 4 different scene points

3m] scene, as shown in Fig. 2. The phase center of the MIMO radar
is located at the origin. In front of the array there is a single layer
slab wall with thickness d = 0.1m. We examine four representative
points of interest in the scene, at locations [0, 0.7], [0, 2.5], [1.2, 0.7]
and [1.2, 2.5], denoted as points a, b, c and d in Fig. 2.

The PSFs of the four points of interest are shown in Fig. 3 for a wall
with relative permittivity (a) ε = 2 and (b) ε = 5, for the co-prime
(top), nested (middle) and a single realization of the random (bottom)
array. All arrays have M̃t = 4 and M̃r = 5. Red and blue crosses
locate the peak positions of the mainlobe and maximum sidelobe.
As evident in the figure, each configuration exhibits very different
characteristics, severely affected by the wall profile. In general, nested
arrays exhibit better robustness to wall properties.

Fig. 4 illustrate the -3dB MLA in m2 and MSL in dB for the
different configurations different sparse arrays as a function of the
number of MIMO elements M̃r+M̃t with ε = 2 and 5. The MLAs
and MSLs of the random arrays are computed by averaging over 50
realizations of array geometries for each value of M̃r+M̃t.

From Fig. 4 we can draw the following conclusions: i) Co-prime
arrays have better cross-range resolution (measured by MLA) than
nested arrays since co-prime arrays provide larger virtual aperture
length. In contrast, nested arrays exhibit lower MSL. ii) Random
arrays in general produce higher MSLs compared to co-prime and
nested arrays. iii) The effect of array geometry on MSL is signifi-
cantly diminished for walls with higher relative permittivity; overall,
MSL increases as relative permittivity increases. iv) For smaller wall
permittivity, multiple reflections may cause ambiguities in the range
profile resulting in enlarged MLAs. For larger wall permittivity,
multiple reflections produce better range resolvability with lower
MLA but larger MSL. v) Points of interest near the endfire (e.g., see
scene point c) suffer more serious influence from wall multiples, since
the Fresnel reflection coefficient of the air-wall interface increases.

B. Image Recovery

While PSF characteristics are important in the system design, they
do not convey the whole picture. For that reason, we also performed
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Fig. 5. Reconstruction error for the three array architectures

0 dB 5 dB 10 dB Truth
d1 5.56 ± 0.29 5.30 ± 0.44 5.25 ± 0.22 5.35
ε1 4.54 ± 0.43 5.01 ± 1.02 5.97 ± 0.54 5
d2 5.75 ± 0.33 5.97 ± 0.54 6.24 ± 0.46 6.25
ε2 11.74 ± 1.34 11.06 ± 1.73 10.06 ± 1.40 10
d3 3.67 ± 0.48 3.92 ± 0.33 3.93 ± 0.14 3.75
ε3 5.58 ± 1.67 4.75 ± 0.96 4.62 ± 0.30 5

TABLE I
TOA BASED WALL PROFILE ESTIMATION RESULTS FROM THE FDTD

SIMULATION WITH 30 NOISE REALIZATIONS

two sets of image recovery experiments.
In the first set of experiments, we generate the exact MIMO sensing

matrix Φ̃, with known wall parameters. We consider a 3m×3m region
of interest where the phase center of the MIMO radar located at
[0, 0], with a zero standoff distance from a single layer slab wall with
thickness d = 0.1m. The radar uses a pulse bandwidth from 3GHz to
5GHz. We start with full MIMO Tx and Rx ULA with 21 elements
each, having inter-element spacing 3 cm. The scene is discretized to
a 32×32 grid. We generated random reflectivity maps with K = 35
point reflectors randomly placed on the grid, with standard normal
reflectivity distribution. To evaluate performance we measure the `2
reconstruction error ‖ŝ− s‖2/‖s‖2.

Figure 5 plots the reconstruction error for the three array archi-
tectures as a function of the total sparse array elements M̃r + M̃t

with relative wall permittivity ε = 2 and 10 respectively. The
observation vector y is perturbed by additive Gaussian noise with 20
dB SNR. As discussed in Section 3, since co-prime array provides
relatively smaller MLAs with acceptable MSLs, it outperforms both
nested and random sparse arrays. As wall permittivity increases,
the reconstruction error for all architectures increases, since wall
multiples increase the ambiguity in the PSF in the form of MSL.

In the second set of experiments, we used a two-dimensional finite-
difference time-domain (FDTD) method to realistically simulate the
actual received scattered field instead of using our model. This allows
for a more realistic experiment, with solid scatterers placed in the
scene and no idealized grid assumptions. For this simulation the radar
bandwidth is from 1 GHz to 5 GHz, imaging a 2.5m×2.5m square
room surrounded by four three-layered walls. A total number of seven
metal cylinders are placed inside the room. As with the previous
experiment, we start with full MIMO Tx and Rx ULAs with 21
elements each, having inter-element spacing 3 cm.

In the recovery, we first estimate the wall parameters from the
measurements, using the approach in Sec. IV-A. As an example, we
summarize estimation results in Table I for a 4-by-5 co-prime array.

Using the estimated wall parameters, we reconstruct the image
and plot the results in Fig. 6. Specifically, the top row plots illustrate
reconstruction results using classical backprojection reconstruction—
i.e., matched filtering—from (a) the full 21 by 21 array data, (b)
a co-prime array, and (c) a nested array. Both sparse array designs
use M̃r = 4 and M̃t = 5 elements. The bottom row shows the
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Fig. 3. PSF of co-prime (top), nested (middle) and random (bottom) array designs for a wall with relative permittivity (a) ε = 2 and (b) ε = 5 for the four
points in Fig. 2. The red cross denotes the location of the peak of the mainlobe and the blue cross the location of the largest sidelobe. The gray intensity
level denotes the magnitude of the PSF.
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Fig. 6. Reconstructed image from FDTD simulations. (a)–(c) backprojection,
(d)–(e) sparse reconstruction.

reconstruction results for the same array architectures in (d), (e)
and (f), respectively, but using sparse reconstruction with the IHT
algorithm with K = 45. In all six plots, the true locations and
shapes of the metal objects are marked as red circles. The estimated
components from sparse reconstruction are marked as blue crosses.

As evident, the backprojection reconstruction exhibits significant
artifacts, even using the full arrays, due to the sidelobes of the PSF.
These artifacts, as expected, exagerated using the sparse arrays since
the sidelobes increase. The effect is especially pronounced in the
co-prime array which exhibits significantly higher sidelobes than the
nested array. In contrast, the sparsity-based image reconstruction is
robust to the sidelobes due to sparse arrays and is able to recover the
image in all three cases.
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