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Abstract—We consider multi-static radar with a single trans-
mitter and multiple, spatially distributed, linear sensor arrays,
imaging an area with several targets. Assuming that the location
and orientation of all the sensor arrays is known and that all
measurements are synchronized, we develop compressive sensing
based methods to improve imaging performance. Our approach
imposes sparsity on the complex-valued reconstruction of the
region of interest, with the non-zero coefficients corresponding
to the imaged targets. Compared to conventional delay-and-sum
approaches, which typically exhibit aliasing and ghosting artifacts
due to the distributed small-aperture arrays, our sparsity-driven
methods improve the imaging performance and provide high res-
olution. We validate our methods through numerical experiments
on simulated data.

I. INTRODUCTION

In order to image a scene, radar systems emit pulses and
record echoes reflected from the targets in the scene. The
received echoes are a weighted combination of the transmitted
pulses, appropriately delayed according to the round-trip travel
time from the transmitter to each target and back to each
receiver, and scaled according to each target’s reflectivity.
The radar reconstructs the scene from the received echoes by
estimating the delay and reflectivity to each target. The angular
(azimuth) resolution of radar images depends on the aperture
size of the radar sensor while the distance (range) resolution
depends on the bandwidth of the transmitted pulse.

In practice, it is often difficult or very expensive to build
a large aperture to achieve high azimuth resolution. Instead,
multiple distributed sensing platforms are often deployed, each
with a small aperture size, collaboratively collecting radar
echoes, thus creating a large effective aperture. Distributed
sensing has several benefits, including flexibility of platform
placement, low operation and maintenance cost, and robustness
to individual sensor failures.

On the other hand, distributed sensing requires much
more sophisticated processing, compared to a conventional
single-array system. In practice, conventional distributed radar
imaging approaches typically process the signals received at
each sensor platform individually using matched filtering, then
fuse these estimates in a subsequent stage. Since the platforms
are not generally uniformly distributed, the final images may
exhibit ambiguity or ghost images, making it difficult to
distinguish targets.

In this paper, we aim to improve the imaging performance
using distributed sensing by jointly processing all measure-
ments and exploiting algorithms based on compressive sensing
(CS). CS allows robust reconstruction of signals using a
significantly smaller number of measurements compared to

their Nyquist rate. This sampling rate reduction is achieved by
using randomized measurements, improved signal models, and
non-linear reconstruction algorithms [1]. In radar applications,
CS has been utilized to improve the resolution of images [2]–
[5] by assuming that the received signal can be modeled as a
linear combination of waveforms corresponding to the targets
and the underlying vector of target reflectivity is sparse or has
further structure.

Specifically, we consider a scenario where multiple small
aperture arrays collect radar echoes from multiple targets
excited by a single transmitter. The multiple arrays are uniform
linear arrays randomly distributed with different locations and
orientations at the same side of the area of interest. Although
the image resolution of each array is low due to its small
aperture size, a high resolution is achieved by combining all
distributed arrays using sparsity-driven imaging method.

This paper is organized as follows. In Section II, we
describe the model of distributed sensing, as well as the
conventional delay-and-sum imaging approaches. We present
our CS inspired imaging methods in Section III, where we pro-
pose algorithms based on spatial-domain and spatial-gradient-
domain sparsity, respectively. Finally, we present numerical
simulations followed by concluding remarks in Section IV.

II. DISTRIBUTED SENSING MODEL

We consider a multi-static distributed radar with one trans-
mitter and M distributed linear antenna arrays, each with
Nm (m = 1, . . . ,M) elements, illuminating an area of interest.
We assume the antennas arrays are static and placed at the
same side of the area with random orientations within a certain
angular range, as shown in Fig. 1.

We use p(t) to denote in the time-domain pulse emitted by
the transmitter located at the spatial location lS represented by
the red x-mark in Fig. 1. In the frequency domain, the pulse,
denoted using P (ω), can be expressed as

P (ω) =

∫
R
p(t)e−jωt dt. (1)

For a single point target, located at location lT , the radar echo
received by the nth element of the mth receiver array—the
location of which is denoted using lm,n—can be expressed in
the frequency domain as

Y (ω, lS , lm,n) = P (ω)X(lT )e−jω
‖lS−lT ‖+‖lm,n−lT ‖

c , (2)

where X(lT ) is the complex-valued reflectivity coefficient of
the point target and the exponential term approximates the
Green’s function from the source at lS to the receiver at
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Fig. 1. Example distributed radar imaging configuration using distributed
arrays, depicted using magenta, blue, green, and black color. The red x-mark
represents transmitter and cyan dots represent virtual receivers from which
missing data is reconstructed using one of the algorithms proposed in this
paper. The red triangle, rectangle and circle on the right hand side represent
targets to be detected.

lm,n via the target location lT . For simplicity, we ignore
the magnitude term of the Green’s function since it can be
considered constant for the whole imaging domain.

Without loss of generality we assume there are K objects in
the area of interest, where each object is composed of multiple
stationary scattering centers. Moreover, we assume that the
array aperture size is small, such that the same scattering
centers are observed at all elements of the array. We also
discretize the area of interest, using a two-dimensional grid,
where index i denotes each gridpoint, with corresponding
location li. Consequently, the received signal can be modeled
as the superposition of radar echoes of all K objects in the
area of interest as follows

Y (ω, lS , lm,n) =
∑
i

P (ω)X(li)e
−jω ‖lS−li‖+‖lm,n−li‖

c , (3)

where X(li) is the reflectivity of a target if it is occupying
grid point i and zero otherwise. This propagation equation can
be compactly denoted in a matrix-vector form

ym = Φmxm + em, (4)

where ym, Φm, and xm represent the samples of the received
signal, the forward acquisition process, and the reflectivity
corresponding to the mth array, respectively. Note that the
vector em in the discretized model (4) represents additive
acquisition noise.

Assuming that the targets’ complex reflectivity coefficients
are identical as observed by all the receivers, we can coherently
combine the received signals from all the receives as

y = Φx + e, (5)

where y = [y1, ...,yM ]
T , Φ = [Φ1, ...,ΦM ]

T , and x =
x1 = x2 = ... = xM . Again, the vector e in (5) represents
measurement noise.

The goal of the image formation process is to determine
the signal of interest x from the array echoes y given the
acquisition matrix Φ. In other words, image formation attempts

to solve a linear inverse problem. If the acquisition matrix Φ
is invertible, the straightforward choice is to use the inverse or
the pseudoinverse of Φ to determine x, i.e.,

x̂ = Φ†y. (6)

However, due to the size of Φ, the pseudo-inverse Φ† may be
difficult to compute and is often not robust to noise. Instead,
the more commonly used delay-and-sum beamforming uses
the adjoint to estimate x

x̂ = ΦHy. (7)

In distributed sensing, sensor arrays are generally non-
uniformly distributed in the spatial domain. Therefore, the
sidelobes of the beamforming imaging results are generally
large (e.g., see [6]), making it difficult to discriminate targets.

III. COMPRESSIVE SENSING IMAGING

In order to improve the imaging resolution of distributed
sensing, we propose two CS-inspired imaging methods. Our
first method is based on enforcing image sparsity directly in the
spatial domain. However, since spatial-domain sparsity is not
strictly true for radar images, we additionally propose a post-
processing step to further boost the performance of traditional
CS-based radar imaging in the presence of noise. The second
method circumvents the post-processing by imposing sparsity
in the gradient domain, as measured using the total variation
semi-norm. This is a more realistic assumption for radar
imaging, where images are often piecewise smooth.

A. Image-domain sparsity

The beampattern of a non-uniform array generally exhibits
larger sidelobes than a uniform array of the same size. To
eliminate the effect of the sidelobes, in the first approach, we
interpret the distributed measurements as the downsampled
versions of the data from larger distributed uniform arrays,
where each large array has about the same aperture size as the
total aperture (see yellow dotted lines in Fig. 1). Assuming
noiseless acquisition in of (5), we represent the full data on
the larger uniform arrays as yfull. The vector yfull includes the
measured data y and unmeasured data ȳ as follows

yfull =

[
y
y

]
=

[
E
E

]
Ψx. (8)

Here, E and E represent complementary down-sampling op-
erators, respectively, and Ψ denotes the measurement matrix
for large uniform aperture arrays.

In traditional CS, the vector x is modeled as a sparse signal,
which is generally not true in radar imaging. Instead of simply
treating x as a sparse signal, we propose to decompose x into
sparse part xs and dense residual xr as

x = xs + xr. (9)

Substituting this expression into (8), the noisy measured data
can be expressed as

y = EΨxs + EΨxr + e. (10)

Treating EΨxr as an additional noise component, the estimate
of the sparse component xs is given by

x̂s = arg min
x

||y −EΨx||2`2 s.t. ‖x‖`0 < N. (11)



The above problem can be solved by various compressive
sensing solvers. We rely on an iterative algorithm, originally
introduced in [7] for SAR applications, which is based on the
Stagewise Orthogonal Matching Pursuit (STOMP) [8].

Given the sparse estimate x̂s, we estimate its contribution
to the measured data as EΨx̂s. We assume the residual data
yr = y−EΨx̂s is due to the dense part xr. Thus, we perform
a line search to estimate the dense part, such that x̂s and x̂r
can be combined properly. In particular, x̂r = αΨHyr, where
α is a scalar determined by

α = arg min
α

‖Ψx̂r − yr‖2`2 = arg min
α

‖αΨΨHyr − yr‖2`2 .
(12)

By solving (12), we have

x̂r =
yHr yr

yHr ΨΨHyr
ΨHyr. (13)

To obtain the final image we combine (11) and (13):

x̂ = x̂s + x̂r. (14)

Alternatively, we can estimate the missing data on the large
uniform arrays using the sparse estimate x̂s as

y = EΨx̂s. (15)

Combining (15) with the measured data, we obtain an estimate
of a full data set for the large aperture arrays as

ŷfull = E†y + E
†
EΨx̂s. (16)

Note that E is a selection operator, and its pseudoinverse E†

just fills the missing data with zeros.

Based on the estimated data, we can perform imaging using
conventional delay-and-sum beamforming

x̂ = ΨH ŷfull = ΨH(E†y + E
†
EΨx̂s)

= ΨHΨx̂s + ΨHE†EΨx̂r. (17)

The final images produced by (14) and (17) are not strictly
sparse. The output of (14) is generally sharper than that of (17),
since the term ΨHΨ works as a low pass filter, with filtering
characteristics related to the large aperture measurement matrix
Ψ. In practice, however, since radar echoes are often noisy, the
final imaging result is visually better using (17).

B. Image gradient-domain sparsity

As an alternative to spatial sparsity, we formulate the
gradient-domain algorithm as the following minimization prob-
lem

x̂TV = arg min
x

{
1

2
‖y −Φx‖2`2 + λTV(x)

}
, (18)

where TV denotes the isotropic total variation regularizer [9]

TV(x) ,
∑
i

‖[Dx]i‖`2 (19a)

=
∑
i

√
|[Dxx]i|2 + |[Dyx]i|2. (19b)

Here, λ > 0 is the regularization parameter and [Dx]i =
([Dxx]i, [Dyx]i) denotes the ith component of the image

gradient. Since TV-term in (18) is non-differentiable, we
formulate the problem as the following equivalent constrained
optimization problem

(x̂, d̂) = arg min
x,d

{
1

2
‖y −Φx‖2`2 + λ

∑
i

‖[d]i‖`2 : d = Dx

}
We solve the constrained optimization problem by designing
an augmented Lagrangian (AL) scheme [10], specifically, by
seeking the critical points of the following cost

L(x,d, s) ,
1

2
‖y −Φx‖2`2 + λ

∑
i

‖[d]i‖`2 (20)

+ Re{sH(d−Dx)}+
ρ

2
‖d−Dx‖2`2 ,

where s is the dual variable that imposes the constraint
d = Dx, and ρ > 0 is the quadratic penalty parameter.
Traditionally, an AL scheme solves the problem (20) by
alternating between a joint minimization step and a Lagrangian
update step as

(xk+1,dk+1)← arg min
x,d

{
L(x,d, sk)

}
(21a)

sk+1 ← sk + ρ(dk+1 −Dxk+1). (21b)

However, the joint minimization step (21a) can be compu-
tationally intensive. To circumvent this problem, we sepa-
rate (21a) into a succession of simpler steps. This form of
separation is commonly known as the alternating direction
method of multipliers (ADMM) [11] and can be described as
follows

dk+1 ← arg min
d

{
L(xk,d, sk)

}
(22a)

xk+1 ← arg min
x

{
L(x,dk+1, sk)

}
(22b)

sk+1 ← sk + ρ(dk+1 −Dxk+1). (22c)

The step in Eq. (22a) admits a closed-form solution

[dk+1]i ← T ([Dxk − sk/ρ]i; λ/ρ),

where i is the pixel number and T is the component-wise
shrinkage function

T (y, τ) , arg min
x∈C2

{
1

2
‖x− y‖2`2 + τ‖x‖`2

}
(23a)

= max (‖y‖`2 − τ, 0)
y

‖y‖`2
. (23b)

The step in Eq. (22b) reduces to a linear solution

xk+1 =
(
ΦHΦ + ρDHD

)−1 (
ΦHy + ρDH

(
dk+1 + sk/ρ

))
.

For each iteration k = 1, 2, . . . , the update rules (22)
produce the estimates xk of the true radar image x. The
final computational time required to obtain the estimate x̂
depends on the total number of iterations kmax. In practice, we
found that, by using a sufficiently high number of iterations
kmax = 100 with an additional stopping criterion based on
measuring the relative change of the solution in two successive
iterations

‖xk+1 − xk‖`2
‖xk‖`2

≤ 10−4, (24)

the algorithm achieves excellent results as illustrated in Sec-
tion IV.
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Fig. 2. Pulse emitted by the transmitter in (a) time domain, (b) frequency
domain.

Range (m)
2.7 5

C
ro

ss
 ra

ng
e 

(m
)

0

2.3

Range (m)
2.7 5

C
ro

ss
 ra

ng
e 

(m
)

0

2.3

Range (m)
2.7 5

C
ro

ss
 ra

ng
e 

(m
)

0

2.3

Range (m)
2.7 5

C
ro

ss
 ra

ng
e 

(m
)

0

2.3

-25

-20

-15

-10

-5

00

-25

Range (m)
2.7 5

C
ro

ss
 ra

ng
e 

(m
)

0

2.3

(a) (b)

(c) (d)

Fig. 3. Imaging results: (a) delay-and-sum beamforming using a single
small-aperture array; (b) coherent delay-and-sum beamforming using all four
distributed arrays; (c) CS reconstruction with spatial-domain sparsity using all
four arrays; (d) CS reconstruction with spatial- gradient-domain sparsity using
all four arrays.

IV. NUMERICAL EXPERIMENTS

To study the performance of our algorithms, we consider
a multi-static experiment depicted in Fig. 1, in which four
distributed antenna arrays are used to image three targets in
the area of interest. The radar transmitter, denoted by a red ×
in the figure, is located near the four arrays. We use a two-
dimensional finite-difference time-domain (FDTD) simulator
to emit a differential Gaussian pulse, illustrated in Fig. 2, from
the transmitter and record the electric field at all receivers. We
simulate noisy measurements by adding noise of SNR = 30
dB to the data before imaging.

The imaging results are plotted in Fig. 3 with 25 dB
dynamic range. As evident in Fig. 3(a), the imaging result
of a single small aperture array using conventional delay-
and-sum beamforming exhibits very coarse azimuth resolution.
Figure 3(b) shows that the imaging quality is improved if the
beamforming is performed by combining the four distributed
arrays coherently, but there still exists strong ambiguity.
Instead, our CS-based imaging method with spatial-domain
sparsity, shown in Fig. 3(c), suppresses most of the sidelobes
and obtains a much tighter focus on the targets, compared
to conventional delay-and-sum beamforming. Finally, as we

can see in Fig. 3(d), imposing spatial-gradient-domain sparsity
with regularization parameter λ = 10−4 further improves the
quality of the image by removing isolated noisy pixels and
yielding a sharp focus on the targets.

V. DISCUSSION

We employ sparsity-driven methods to improve radar imag-
ing using distributed sensor arrays. Our approach exploits the
structure of the imaged area, either in the form of spatial spar-
sity or sparsity in the gradient. Even though our approach is
computationally more expensive than conventional beamform-
ing, it also demonstrates significantly improves the imaging
quality. Our approach relies on sparse and variational methods,
well-established in the context of compressive sensing and
ill-posed inverse problems. While our numerical simulations
demonstrate the effectiveness in a specific application, our
results are further evidence of the benefits of sparsity-driven
approaches in radar imaging applications.

One of the drawbacks of our approach, is the assumption of
perfect synchronization among sensors and perfect knowledge
of the sensor geometry. In practice, synchronization to the
desired accuracy and knowledge of the sensor position might
not be available. Our goal is to extend our approach to handle
imperfect information on timing and location of the sensors.
However, we defer that for a future publication.
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