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Abstract—We consider a distributed array imaging problem

for detecting targets in a region of interest (ROI), where the

radar sensors are perturbed with location errors corresponding

to several wavelengths. In order to improve the imaging perfor-

mance, we propose a method based on compressive sensing that

can simultaneously compensate for position-induced phase errors

and perform focused imaging. Compared to existing autofocusing

methods that typically exhibit poor performance for large position

errors, our method can form sharp images of targets situated in

the ROI even for position errors that are ten wavelengths large.

We validate our method on simulated noisy data.

Keywords—Coherent radar imaging, distributed sensing, auto-
focus, compressive sensing

I. INTRODUCTION

The resolution of radar images depends on the size of
aperture formed by the sensor array. In order to form a large
physical aperture one appealing option is to employ several
small-aperture arrays distributed in space. Typically, spatial
distribution of such arrays is not uniform; however, by process-
ing the data collaboratively, they can still form a large effective
aperture. It has been shown that, when the locations of arrays
are precisely known and the received signals are synchronized,
such a distributed sensing scheme can significantly improve
the imaging resolution [1]. Additionally, it was recently shown
that compressive sensing (CS) based techniques and sparsity-
constraints can further reduce ghost targets in the image due
to non-uniformity of array locations [2]. Distributed array
imaging schemes also exhibit several other practical benefits
such as flexibility of platform placement, low operation and
maintenance costs, and robustness to individual sensor failures.

One of the practical challenges in distributed array imaging
is that the locations of the arrays are only known approximately
due to various position perturbations. Such perturbations can
be as large as several wavelengths of the radar’s central fre-
quency. Although modern navigation systems such as Global
Positioning System (GPS) can measure positions with a rel-
atively high accuracy, the range of resulting errors is still
beyond the requirements of high-resolution radar imaging. For
position perturbations that are larger than one wavelength, the
phase wrapping in the measured signal complicates coherent
imaging. Incoherent processing, on the other hand, inevitably
degrades the imaging resolution and leads to loss of focus in
the resulting image. Therefore, there is a need for an imaging
method for distributed arrays that can perform autofocusing in
order to compensate for the unknown position perturbations.

There exist several autofocusing methods for imaging using

a single sensor array, which are realized by compensating ei-
ther for the phase or the position errors [3]–[8]. In recent years,
the emergence of CS-based radar imaging has resulted in sev-
eral new methods that do autofocusing by incorporating spar-
sity constraints into image formation [8]–[11]. When position
errors are significantly smaller than the central wavelength,
CS-based autofocusing algorithms formulate imaging as a non-
linear optimization problem with a perturbed projection matrix.
However, error bounds in the solution depend on position
errors [12], [13]. When position errors are greater than the
central wavelength, a CS-based method with data coherence
analysis was shown to perform autofocused imaging [11].

In this paper, we propose an autofocusing method for
distributed arrays perturbed with unknown positions errors.
The proposed method extends our previous work on coherent
distributed radar imaging [2] by allowing location ambiguities,
and on autofocusing for a single sensor array [11] by investi-
gating distributed sensing with multiple sensors. In particular,
we consider a multi-static radar imaging problem where one
transmitting/receiving radar platform and multiple receiving
radar platforms are moving towards a region of interest (ROI)
with position perturbations. The objective is to detect targets
inside the ROI. Due to inaccurate positioning and motion er-
rors, the actual array positions are perturbed up to several times
the central radar wavelength. Although the image resolution
of each sensor array is low due to its small aperture size,
a high-resolution image can be formed by jointly processing
the outputs of all distributed arrays with well-compensated
position errors. Our approach is based on an assumption of
a sparse scene, and is realized iteratively by solving series
of optimization problems for compensating position-induced
phase errors, exploiting target signatures, and estimating an-
tenna positions. Compared to existing approaches, our method
substantially improves imaging performance, even for position
perturbations that are up to ten times the central wavelength,
thus yielding a sharp image for targets located in the ROI.

This paper is organized as follows. In Section II, we build
a general data acquisition model for distributed sensor arrays
with position perturbations. In Section III, we describe the
details of our autofocusing distributed array imaging method
with data coherence analysis and group sparsity constraints.
Imaging results with simulated noisy data are presented in
Section IV with conclusion in Section V.

II. DATA ACQUISITION MODEL

We consider a two-dimensional (2D) radar imaging prob-
lem in which a total of D distributed radar platforms are



moving towards a ROI to detect targets within. Each platform
forms a forward-looking virtual array. We use p(t) and P (!)
to denote the time-domain source pulse and its corresponding
frequency spectrum, respectively, where

P (!) =

Z

R
p(t)e�j!t dt. (1)

The scattered field at location r0 due to the target with a phase
center at l and the excitation pulse originating from r, can be
approximated with the first-Born approximation as [14]

Yl(!, r, r
0) = P (!)S(!, l)G(!, l, r)G(!, r0, l), (2)

where S(!, l) is a complex-valued function of frequency,
which accounts for all the terms due to the asymptotic ap-
proximation; G(!, l, r) accounts for propagation from r to l
and can be represented by

G(!, l, r) = a(r, l)e�j! kr�lk
c , (3)

where a(r, l) represents the overall magnitude attenuation due
to the antenna beampattern and the propagation between r
and l, and e�j! kr�lk

c is the phase change term of the received
signal relative to the source pulse after propagating distance
kr � lk at speed c. For simplicity, we have omitted the noise
term from eq. (2).

Without a loss of generality, we assume that there are up
to K targets, each with a phase center located at a pixel
in the ROI image. Let ik 2 {1, ..., I} be the pixel index
of the kth target and lik be the corresponding location. Let
rd,n be the ideal location of the nth virtual element of the
dth array, where n 2 {1, 2, ..., N} and d 2 {1, 2, ..., D}. Due
to position perturbations, the actual measurements are taken
at erd,n = rd,n + "d,n, where "d,n stands for corresponding
unknown position perturbation with 0  |"d,n|  10�, and �
is the wavelength of the radar central frequency. The overall
signal received by the perturbed array is then a superposition of
scattered waves from all targets in the ROI. For the source sig-
nal transmitted by the nth virtual element of the d0th platform,
where d0 2 {1, 2, ..., D}, we consider measurements by the
nth virtual element of the dth platform at a discrete frequency
!m, where m = 1, 2, ...,M . After range compression, we end
up with an M ⇥D⇥N data cube eY, whose entry (m, d, n) is

eY(m, d, n) =
KX

k=1

|P (!m)|2S(!m, lik)a(erd0,n, lik)a(erd,n, lik)

exp

✓
�j!m

kerd0,n � likk+ kerd,n � likk
c

◆
. (4)

To simplify notation, we define a scalar

x(d,n)
ik

= a(erd0,n, lik)a(erd,n, lik)
MX

m=1

|P 2(!m)S(!m, lik)|2,

(5)
an M ⇥ 1 unit vector

�ik =

2

6666664

|P (!1)|2S(!1,lik )PM
m=1 |P 2(!m)S(!m,lik )|2

|P (!2)|2S(!2,lik )PM
m=1 |P 2(!m)S(!m,lik )|2

...
|P (!M )|2S(!M ,lik )PM

m=1 |P 2(!m)S(!m,lik )|2

3

7777775
, (6)

and an M ⇥ 1 exponential vector

e (d,n)
ik

=

2

6666664

e�j!1
kerd0,n�likk+kerd,n�likk

c

e�j!2
kerd0,n�likk+kerd,n�likk

c

...

e�j!M
kerd0,n�likk+kerd,n�likk

c

3

7777775
. (7)

The vector ey(d,n) = eY(:, d, n) can then be written in a matrix-
vector form as

ey(d,n) =
KX

k=1

(�ik � e (d,n)
ik

)x(d,n)
ik

=[� � e (d,n)]x(d,n) = e�(d,n)x(d,n), (8)

where the symbol � represents element-wise product. Here,
e�(d,n) = [�1 � e (d,n)

1 , ...,�I � e (d,n)
I ] is an M ⇥ I projection

matrix of the nth antenna position in the dth array, x(d,n) =
[x(d,n)

1 , ..., x(d,n)
I ]T is a K-sparse vector of target scattering

coefficients. It is important to note that �ik is a target signature
vector independent of antenna positions, which is extracted
from measured data efficiently during the imaging formation.

III. IMAGING WITH AUTOFOCUS

A. Optimization problem

Since the antenna positions erd,n are not known exactly,
image formation that treats the perturbed array as a uniform
array generally yields a de-focused image with its quality re-
lated to the position perturbations. In order to perform imaging
with autofocus, we solve the following sparsity constrained
optimization problem

mine�,x

(
DX

d=1

NX

n=1

key(d,n) � e�(d,n)x(d,n)k22

)

subject to

�����

DX

d=1

NX

n=1

x(d,n)

�����
0

 K, (9)

where e� = {e�(d,n)}d,n and x = {x(d,n)}d,n. The above
optimization problem is similar to the group sparsity formu-
lation that is often used in CS imaging [15]. Specifically, it
relies on the fact that all unknown vectors share the same
non-zero support but have generally different values within
the support. However, the autofocusing problem formulated in
eq. (9) is more general than the group sparsity problem since
the projection matrices are not identical across all antennas.
They share the same target signature vector �ik , but are
different in the unknown exponential term e (d,n)

ik
. Motivated

by the orthogonal matching pursuit algorithm, we solve (9)
iteratively with maximum of K iterations. At the kth iteration,
given the residual data ey(d,n)

res,k , which is initialized as measured
data, and updated at each iteration by removing the signals of
all the detected targets, we have a degenerated problem

min
e�,x

(
DX

d=1

NX

n=1

key(d,n)
res,k � e�(d,n)x(d,n)k22

)

subject to

�����

DX

d=1

NX

n=1

x(d,n)

�����
0

= 1. (10)



Note that the `0-norm of vectors {x(d,n)} is 1, where the only
non-zero component corresponding the kth strongest target
phase center. Let the image reconstructed by the residual data
ey(d,n)

res,k be bxres,k. A target is then detected at location lik where
the maximum absolute value of bxres,k is observed as follows

ik = argmax
i

{ |bxres,k(i)|} . (11)

To determine e�, we stack
n
ey(d,n)

res,k

o
to form an M⇥ND matrix

eYres,k = [ey(1,1)
res,k , ey

(1,2)
res,k , ..., ey

(2,1)
res,k , ..., ey

(D,N)
res,k ]. (12)

Similarly, vectors {e�(d,n)x(d,n)} were also stacked into an
M ⇥ ND matrix. The stacked matrix [e�(d,n)x(d,n)] is then
re-organized as

[e�(1,1)x(1,1), e�(1,2)x(1,2), ..., e�(D,N)x(D,N)]

=[x(1,1)
ik

�ik , ..., x
(D,N)
ik

�ik ] � [ e 
(1,1)
ik

, ..., e (D,N)
ik

]

=Eik � e ik , (13)

where Eik = [x(1,1)
ik

·�ik , ..., x
(D,N)
ik

·�ik ] is an M⇥DN rank-
one matrix, whose dominant left singular vector is exactly �ik ,
and e ik = [ e (1,1)

ik
, ..., e (D,N)

ik
] is an M ⇥ DN exponential

matrix parameterized by the distance between the kth target
and the perturbed distributed arrays. Based on (12) and (13),
and given x, e� can be determined by solving

min
Eik

,e ik

k eYres,k �Eik � e ikk2F, s.t. rank(Eik) = 1, (14)

where the subscript F represents the Frobenius norm of the ma-
trix. Equation (14) is then solved by an inner loop in which we
alternately update e ik by data coherence analysis, described in
Section III-B, and Eik by dominant target signature analysis,
as described in Section III-C.

B. Data coherence anaysis

To estimate time lags, we use the cross-correlation (CC)
of signals. Specifically, given eYres,k and Eik , we compute the
time-delay parameter e ik by finding the delay corresponding
to the maximum of the CC function. However, CC is not
concave and, thus, may have multiple local maxima. To reduce
ambiguity in the CC function, we extract the kth target
response using time gating. Assume that at the kth iteration,
we reconstruct an image bxres,k using residual data {y(d,n)

res,k�1}.
With the target location, the residual signal is gated in time as

by(d,n)ik
(t) =

(
y(d,n)res,k�1(t), |t� ⌧ (d,n)ik

|  20�
c

0, |t� ⌧ (d,n)ik
| > 20�

c

, (15)

where y(d,n)res,k�1(t) is the time-domain residual signal, and
⌧ (d,n)ik

= (krd0,n � likk + krd,n � likk)/c. Note that the
time-gating boundary (20�)/c is determined by the maximum
position perturbation. It can be tightened by considering the
smooth trajectory of each radar platform. Let byref

ik
(t) be the

time domain signal of the dominant vector �ik of Eik . We
then take byref

ik
(t) as a reference, and estimate the time shift of

by(d,n)ik
(t) in (15) as

b⌧ (d,n)ref = argmax
⌧

⇢Z
by(d,n)ik

(t) · byref
ik (t+ ⌧)dt

�
. (16)

Let e⌧ (d,n)ik
= (kerd0,n � likk + kerd,n � likk)/c represent the

unknown pulse propagation time from erd0,n to erd,n via lik .
Based on (16), and assuming the total propagation time is the
same as that of the ideal distributed uniform array, we have
the following equations to solve e⌧ (d,n)ik

for all d 2 [1, 2, ..., D]
and n 2 [1, 2, ..., N ], such that the signals in (15) are coherent
at lik after back-propagation,

(
e⌧ (d,n)ik

� e⌧ ref
ik

= b⌧ (d,n)ref ,
PD

n=1

PN
n=1 e⌧

(d,n)
ik

=
PD

n=1

PN
n=1 ⌧

(d,n)
ik

. (17)

With the solution e⌧ (d,n)ik
of (17), e (d,n)

ik
is computed using (7).

C. Target signature extraction

Given e ik , we determine Eik using singular value decom-
position (SVD) of Yres,k = eYres,k � e ⇤

ik [16]:

Yres,k = Uk⌃kV
H
k , (18)

where the superscript ⇤ represents the phase conjugate and the
superscript H represents the Hermitian transpose. Based on the
SVD, we have

Eik = �k1uk1vk1
H, (19)

where �k1 is the largest singular value of Yres,k representing
the strength of the kth target, vH

1,ik is the corresponding right
singular vector representing the antenna pattern, and uk1 is the
corresponding left singular vector representing target signature,

b�ik = uk1. (20)

Since the largest singular value �1,ik is related to the target
strength, we terminate our algorithm based on the target
strength relative to the background noise. Specifically, we
terminate when �k1��k2

�k1
< ✏ is satisfied, where �k2 is the

second largest singular value of Yres,k, and ✏ is a threshold
with value 0 < ✏ < 1.

D. Antenna position estimation

Based on the propagation time between each antenna and
all k detected targets after the kth iteration, we estimate the
array element positions by minimizing the cost functions

br(d0,n)
k = argmin

r

n
|hr � rd0,n,

rd0,n+1 � rd0,n

krd0,n+1 � rd0,nk
i|2

+
kX

k0=1

�k01Pk
k0=1 �k01

 
kr � lik0 k �

e⌧ (d0,n)
ik0 c

2

!2 o
, (21)

and

br(d,n)k =argmin
r

n
|hr � rd,n,

rd,n+1 � rd,n
krd,n+1 � rd,nk

i|2

+
kX

k0=1

�k01Pk
k0=1 �k01

 
kr � lik0 k � (e⌧ (d,n)ik0 �

e⌧ (d0,n)
ik0

2
)c

!2 o
,

(22)

for d 6= d0. Each of the cost functions above is composed of
two parts. The first part minimizes the azimuth discrepancy
between the perturbed antenna and its ideal position. The sec-
ond part restricts the distance in the range direction according
to the propagation time. We use normalized target strength



�k01/(
Pk

k0=1 �k01) to weight the contribution of targets ac-
cording to their scattering strength. While the cost functions
in the optimization (21) and (22) are not convex, it might be
possible to computationally find their global optimal solutions
using the algorithm in [17] with a proper initial value of r.
Note that since the antenna locations are determined based
on distance measurements, which are translation and rotation
invariant, we assume in our simulations that the mean and
the dominant orientation of the perturbed array are the same
as the ideal uniform array. To remove the translation and the
rotation effects of the perturbed antennas and keep the distance
between the perturbed antennas and targets unchanged, a linear
transform on both the antenna locations and the target locations
is necessary [18]. The updated antenna positions are then used
to estimate the next target position using the residual data.

E. Image reconstruction

Given the estimated projection matrix

b�(d,n)
k =

h
b�i1 � e 

(d,n)
i1

, b�i2 � e 
(d,n)
i2

, ..., b�ik � e (d,n)
ik

i
, (23)

scattering coefficients are computed using least squares,

bx(d,n)
k = (b�(d,n)

k )†ey(d,n), (24)

where bx(d,n)
k is a k ⇥ 1 vector representing scattering coeffi-

cients of the k detected targets and the superscript † denotes the
Penrose-Moore pseudoinverse. A sparse image bxs,k of the ROI
is then reconstructed by assigning bx(d,n)

k to the corresponding
pixel locations as follows

bxs,k(ik0) =
DX

d=1

NX

n=1

bx(d,n)
k (k0), (25)

for all k0 2 [1, ..., k]. For the purpose of target recognition,
it is of great interest to preserve target signature information
in imaging instead of just reconstructing sparse target phase
centers. To this end, we first reconstruct data of an ideal
side-looking uniform array using k detected target signature
dictionaries [2] as follows

by(d,n)
k =

kX

k0=1

bx(d,n)
ik0 · (b�ik0 �  

(d,n)
ik0 ), (26)

where  (d,n)
ik0 has the same expression as e (d,n)

ik
except us-

ing the ideal uniform element position rd,n. Based on the
reconstructed data, we then perform delay-and-sum imaging
to reconstruct a dense image

bxd,k =
DX

d=1

NX

n=1

⇣
 (d,n)

⌘H
by(d,n)
k , (27)

where  (d,n) is an M ⇥ I exponential matrix related to the
ideal uniform array and the whole ROI.

IV. NUMERICAL SIMULATIONS

The simulation setup is depicted in Fig. 1. The ideal
antenna positions of distributed arrays are indicated by black
dots, and perturbed arrays by x-marks. Antenna positions are
perturbed up to 10�. A differential Gaussian pulse, illustrated
in Fig. 2(a), is transmitted from the black array to illuminate
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Fig. 1. Schematic representation of the distributed array imaging setup.
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Fig. 2. (a) Emitted pulse and (b) Simulated noisy echoes received by four
distributed arrays with PSNR=10dB.

the ROI. The received signals are simulated using the free-
space Green’s function and white Gaussian noise. Fig. 2(b)
shows the simulated signal with PSNR = 10 dB.

In our algorithm, we set the total number of targets K =
20. The stop threshold is estimated using the signal PSNR
as ✏ = (10

0.5PSNR
20 � 1)/(10

0.5PSNR
20 ). The imaging results are

plotted in Fig. 3 with 30 dB dynamic range. In particular,
Fig. 3(a) shows imaging using conventional delay-and-sum,
ignoring unknown positions errors. Figure 3(b) shows imaging
with initial phase-compensation using coherence analysis for a
focus point at the center of the ROI. We can see that the image
focus is better overall, but the three off-center targets are still
not well focused. Instead, using our proposed approach, the
sparse image is reconstructed using (25) as shown in Fig. 3(c).
Each circle represents a sparse target, with the circle center
corresponding to the target phase center and size proportional
to the target scattering coefficient. A final dense image with
target signatures using (27) is reconstructed in Fig. 3(d).

For comparison, we plot the result using the conventional
delay-and-sum imaging method given the exactly perturbed
position errors in Fig. 3(e); and the benchmark result of ideal
uniform array in Fig. 3(f). We can notice that Figs. 3(e) and(f)
are quite similar to each other since they both have known
distributed array positions. However, due to the non-uniformly
distributed array positions, both of the imaging results exhibit
relative large sidelobes. For comparison, our imaging result
in Fig. 3(d) presents much fewer sidelobes since the imaging
result is based on reconstructed data of an ideal side-looking
uniform array, which typically exhibits smaller sidelobes than
a random array [19]. We verify our imaging algorithm on
different noise data with PSNR = 10, 15, 20, and 30 dB.
We plot the reconstructed dense image in Fig. 4(a) when
PSNR = 20 dB, where we observe an clean and well-focused
imaging result. We compare the relative reconstruction errors
of different PSNRs in Fig. 4(b). Fig. 4 (b) shows that when
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Fig. 3. Imaging results using simulated noisy data with different methods
dealing with position errors: (a) delay-and-sum imaging with uniform array
Green’s function; (b) delay-and-sum imaging after initial phase compensation;
(c) proposed CS based imaging with image-domain sparsity constraint; (d)
proposed CS based imaging with targets’ signatures; (e) delay-and-sum
imaging with known position errors; (f) delay-and-sum imaging with ideal
distributed uniform arrays.
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Fig. 4. (a) Reconstructed dense image with target signature using data of
PSNR = 20 dB, (b) Relative reconstruction error of iterative autofocus
algorithm.

the PSNR is high, we only need very few iterations to get a
good reconstruction. With more noise we need more iterations
to converge to a good reconstruction result.

V. CONCLUSIONS

We propose a data-driven method to perform automatic
radar focused imaging. Our auto-focusing method is based
on position error correction by exploiting data coherence
and the spatial sparsity of of the imaged area. Our method
exhibits great advantages in dealing with antenna array with
position errors up to several wavelengths of the radar center
frequency, taking antenna radiation pattern and target signature
into consideration. Imaging results with simulated noisy data
demonstrate that our method significantly improved perfor-
mance in imaging localized targets with only several iterations.
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