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Abstract—We consider the problem of compressive imaging
of a three-dimensional (3D) scene using multiple observations
collected from parallel baselines, formed by monostatic sensors
moving in space. In particular, we present a novel iterative
imaging method based on the Omega-K algorithm with edge-
preserving 3D total variation (TV) regularization. The method
combines joint processing of multi-baseline data with TV mini-
mization in a computationally efficient way, thus enabling high-
resolution imaging of the reflectivity map of the scene. We
demonstrate the potential of our method through numerical
evaluations on simulated data with noise.
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I. INTRODUCTION

It is well known that a linear array radar system is capable
of imaging the two-dimensional (2D) range-azimuth reflectiv-
ity of an area by transmitting pulse signals and processing
the corresponding echoes from the area. The resolution of the
generated image in the range direction, which is perpendicular
to the linear array, is determined by the bandwidth of the
transmitted pulse, while the resolution in the azimuth or cross
range direction, which is along the linear array, is inversely
proportional to the aperture size. The linear array can be
formed with a physical array composed of multiple physical
elements with uniform spacing or a virtual array formed by a
moving element. However, due to the lack of elevation aperture
of a single baseline, such 2D imaging systems cannot capture
elevation information of the scene.

In order to perform three-dimensional (3D) imaging of
an area, observations from multiple baselines are necessary
to form an elevation aperture. Similar to the azimuth direc-
tion, the elevation resolution is inversely proportional to the
elevation aperture size. This fundamental limit in resolution
leads to important considerations when designing state-of-the-
art 3D imaging systems. For example, a practical realization
of multiple baselines requires a large number of sensors in a
physical array or several passes over the area for forming a
virtual array. This makes the data collection an expensive and
time consuming task. Additionally, physical considerations,
such as, for example, the tight orbital tubes of the TerraSAR-
X [1] and the COSMO-Skymed [2] systems, might further
limit the realizable elevation aperture and the number of
practically possible baselines. The small elevation aperture
typically results in an elevation resolution that is much lower
compared to that of range and azimuth. While recent sparsity-
driven approaches [3] have significantly improved elevation

resolution, the latter is still not comparable to the resolution
achievable along range and azimuth directions.

In this paper, we re-examine the acquisition process and
propose a novel computational imaging method that combines
a novel multi-baseline measurement model with a sparsity-
driven regularization based on 3D total variation (TV). Our set-
up considers monostatic radar platforms and assumes multi-
baseline data from an area of interest collected by several radar
platforms. Since platforms might be different, each baseline
uses a fixed pulse repetition frequency (PRF) that could be
different from the latter used in other baselines. Our for-
mulation can handle arbitrarily baseline elevations within the
available elevation space, which simplifies the data collection
process. Thus, conventional tomographic radar imaging with
multiple baselines reduces to a special case where only one
platform is used in data collection. Our measurement model ef-
ficiently processes multi-baseline data in its entirety. Together
with our fast iterative algorithm, it is possible to form high-
resolution images in a computationally tractable fashion. The
regularization with 3D TV further improves imaging process
by effectively mitigating missing-data artifacts and suppressing
noise while preserving edges in the image.

Our approach extends prior works [3]–[6] on 3D tomo-
graphic radar imaging by incorporating the following key
contributions:

• Formulation of a model for joint processing of data
from multiple radar platforms using different PRFs.

• Extension of previous work [6], which considered 3D
imaging using planar baseline observations, to more
general hyperplane observations.

• Development of a fast computational imaging method
based on TV that substantially improves the final
quality of reconstructed images.

Using the method described here, it is possible to form
high-quality 3D reflectivity maps with a small number of
baselines, directly reducing the time and cost necessary for
data collection.

This paper is organized as follows. In Section II, we
formulate our measurement model that is based on 3D Omega-
K imaging. In Section III, we use the measurement model to
develop the TV based reconstruction method. In Section IV,
we validate our approach on simulated data.



Fig. 1. Schematic representation of the scenario considered in this paper. A
scene of reflectivity f(r), r = (x, y, z) ∈ R3, is illuminated from several
monostatic radar platforms forming multiple parallel baselines. The echoes
reflected from the scene are collected and jointly processed to computationally
form an image of f .

II. THREE-DIMENSIONAL OMEGA-K IMAGING

As summarized in Fig. 1, we consider a standard 3D
radar imaging problem with a monstatic virtual array that is
comprised of multiple platform trajectories, also referred to
as baselines. We assume that all radar platforms operate in
spotlight mode, which means that they illuminate the same area
of interest. Each baseline forms a 2D image of the scene from
a specific view angle. Conventional imaging systems, such as
the ones used in TerraSAR-X or COSMO-Skymed, exploit
stacks of complex-valued radar images from multiple passes—
collected at different baselines and at different times—to form
3D images representing the reflectivity map of the scene [4].
Instead, in this paper, we treat the multi-baseline data jointly,
to generate a high-resolution reflectivity map without the
intermediate step of forming 2D image stacks. We assume
for efficiency that all the baselines are parallel and aligned
to each other. We also assume, without loss of generality, that
all platforms use the same source pulse for illumination. We
denote this pulse as p(t) with the corresponding frequency
spectrum

P (ω) =

∫
R
p(t)e−jωt dt, (1)

where ω = 2πf represents the angular frequency.

In the monostatic scenario, the received echo that was
reflected by the scene due to pulse p emitted at the location
r′ = (x′, y′, z′) can be written as

s(r′, t) =

∫
R3

p
(
t− 2

‖r−r′‖`2
c

)
4π‖r − r′‖`2

f(r) dr, (2)

where f is the ground reflectivity at location r = (x, y, z).
The four-dimensional (4D), space-time, Fourier transform of
the received echo can be expressed in the ω-k space as

S(k′, ω) =

∫
R4

s(r′, t)e−j〈k
′,r′〉−jωt dr′ dt, (3)

where k′ = (k′x, k
′
y, k
′
z) is the wave vector, and

〈k′, r〉 , k′xx+ k′yy + k′zz. By using the method of station-
ary phase [7] and making the temporal origin correspond to the

center r0 = (x0, y0, z0) of the 3D image, (3) can be expressed
as

S(k′, ω)

= P (ω)
j

4k
e−j〈k,r0〉+2k‖r0‖`2

∫
R3

f(r)e−j〈k,r〉 dr

= P (ω)
j

4k
e−j〈k,r0〉+2k‖r0‖`2F3D {f(r)} (k), (4)

where we set

ky = k′y, kz = k′z, kx =
√

4k2 − (k′y)
2 − (k′z)

2 (5)

with k = ω/c. Here, the constant c denotes the speed of light
and F3D denotes the 3D Fourier transform.

The forward measurement process in (4), models the data
acquisition as a function of the ground reflectivity in the ω-k
space. Using (4) and the ground reflectivity, the radar echo
can be efficiently computed with the fast Fourier transform
(FFT). Additionally, we can express the reflectivity map f as
the inverse Fourier transform of the collected raw data,

f(r) = F−13D

{
−j4kS(k′, ω)

P (ω)
ej〈k,r0〉−2k‖r0‖`2

}
. (6)

Thus, given sufficient amount of measurements, the 3D image
of the ground reflectivity f can be efficiently formed by using
the 3D inverse Fourier transform in the ω-k space. Note that,
to use (6) for image formation, the data acquired over (k′, ω)
first needs to be properly weighted and rearranged into a 3D
data format over k according to the dispertion relation defined
in (5) using a 3D Stolt mapping [8].

III. IMAGING METHOD

A. Inverse Problem Formulation

Generally, high-resolution image formation with (6) re-
quires a large elevation aperture and, correspondingly, large
number of baselines with sufficiently high PRFs. Thus, high
elevation resolution is often too expensive to achieve in prac-
tice due to constraints in elevation aperture size and the number
of baselines.

We now describe a compressive imaging method, relying
only on a small set of baselines, which enables reduction in
the data acquisition burden. We start by discretizing (4) and
representing it as a linear inverse problem

s = Hf + e, (7)

where the goal is to compute the unknown image f ∈ CN of
ground reflectivities from the noisy, measured echoes s ∈ CM .
The measurement matrix H ∈ CM×N models the linear
operator (3) and can be efficiently computed with FFTs. The
vector e ∈ CM represents the measurement noise. Due to
compressive nature of the measurements, where M < N ,
the problem (7) is ill-posed. To circumvent this problem,
we formulate image recovery as the regularized least-squares
optimization

f̂ = argmin
f∈CN

{
1

2
‖s−Hf‖2`2 + λR(f)

}
, (8)



where λ > 0 is a parameter controlling the amount of
regularization, and the functional R is the TV regularizer

R(f) ,
N∑

n=1

‖[Df ]n‖`2 (9)

=

N∑
n=1

√
|[Dxf ]n|2 + |[Dyf ]n|2 + |[Dzf ]n|2,

where D : CN → CN×3 is the discrete gradient operator.
The matrices Dx, Dy , and Dz denote the finite difference
operators along the dimensions x, y, and z, respectively. The
TV prior has been originally proposed by Rudin et al. [9] as
a regularization approach capable of removing noise, while
preserving image edges. It can be interpreted as a sparsity-
promoting `1-penalty on the magnitudes of the image gradient
and has proved to be successful in a wide range of applications
in the context of sparse recovery of images from incomplete
or corrupted measurements [10]–[14].

B. Iterative Optimization

The minimization (8) with TV is a non-trivial optimization
task. The challenging aspects are the massive quantity of data
that typically needs to be processed and the non-smooth nature
of the regularization term (9).

We now design an efficient minimization scheme that can
avoid both of these challenges. In particular, we consider an
augmented-Lagrangian (AL) scheme [15], where we seek the
critical points of the following cost

L(f ,d, z) ,
1

2
‖s−Hf‖2`2 + λ

N∑
n=1

‖[d]n‖`2

+Re{zH (d−Df)}+ ρ

2
‖d−Df‖2`2

=
1

2
‖s−Hf‖2`2 + λ

N∑
n=1

‖[d]n‖`2

+
ρ

2
‖d−Df +

z

ρ
‖2`2 −

1

2ρ
‖z‖2`2 .

Here,the superscript H denotes the Hermitian transpose, z ∈
CN×3 is the dual variable that imposes the constraint d = Df ,
and ρ > 0 is the quadratic penalty parameter. The operator
Re{v} returns the real part of a complex vector v. Traditional
AL schemes solve (8) by alternating between a joint minimiza-
tion step and an update step as

(f t,dt)← argmin
f∈CN ,d∈CN×3

{
L(f ,d, zt−1)

}
(10a)

zt ← zt−1 + ρ(dt −Df t). (10b)

However, the joint minimization step (10a) can be compu-
tationally intensive. To get around this problem, we sepa-
rate (10a) into a succession of simpler steps. This form of
separation is commonly known as the alternating direction
method of multipliers (ADMM) [16] and can be described as

f t ← argmin
f∈CN

{
L(f ,dt−1, zt−1)

}
(11a)

dt ← argmin
d∈CN×3

{
L(f t,d, zt−1)

}
(11b)

zt ← zt−1 + ρ(dt −Df t). (11c)

By ignoring terms that do not depend on f , the step (11a) can
be expressed as linear filtering

f t ← argmin
f∈CN

{
1

2
‖s−Hf‖2`2 +

ρ

2
‖Df − dt−1 − zt−1

ρ
‖2`2

}
←
(
HHH+ ρDHD

)−1 (
HHs+ ρDH(dt−1 + zt−1/ρ)

)
,

which can be efficiently solved. Similarly, the step (11b) can
be simplified as follows

dt ← argmin
d∈CN×3

{
1

2
‖d− qt‖2`2 +

λ

ρ

N∑
n=1

‖[d]n‖`2

}
,

with qt , Df t − zt−1/ρ. This step is solved directly
by component-wise application of the following shrinkage
operator

T (q; τ) , argmin
d∈C3

{
1

2
‖d− q‖2`2 + τ‖d‖`2

}
= max(‖q‖`2 − τ, 0)

q

‖q‖`2
.

Thus, we can express (11b) as

[dt]n ← T ([Df t − zt−1/ρ]n;λ/ρ),

for every n = 1, 2, . . . , N .

To concluder, we described a method based on ADMM for
iteratively minimizing the proposed objective functional. The
algorithm allows us to reduce the optimization to a succession
of straightforward operations.

IV. EXPERIMENTS

In order to validate our approach, we simulated the data
acquired via (4), and performed reconstruction using both
conventional methods and the proposed one. In particular, as
shown in Fig. 2(a) the scene corresponds to letters MERL
comprised of point scatterers placed in a 3D space with
different elevations. As shown in Fig. 1, we collect a total
of 10 baselines, randomly selected from a total number of
1010 possible baselines, along 10× 101 range-elevation grids.
Raw radar data are collected from each baseline with a fixed
PRF; however, for each baseline, the corresponding PRF is
randomly selected. Specifically, starting from a reference PRF,
all baselines have PRFs sub-sampled by a random integer
amount. In other words, each PRF is a fraction of the reference
PRF, with the downsampling rate randomly selected from the
set {2, 3, 4, 5}. Considering the practical noise problem, we
add white Gaussian noise to the simulated data with a peak-
signal-to-noise (PSNR) ratio equal to 15 dB.

We compare three different methods: conventional recon-
struction, image-domain sparsity-based reconstruction, and the
proposed TV-based method. For conventional 3D imaging with
reduced data collection, we use the ω-k imaging relation-
ship (6) by upsampling the data and filling in missing data
with zeros. This approach produces a fast delay-and-sum-type
reconstruction from the acquired data implementing the adjoint
(backprojection) of the acquisition operator. For image-domain
sparsity-based method, we use iterative algorithm that was
described in [6].



(a) (b)

(c) (d)

Fig. 2. Comparison of three image formation methods on a region of size 200× 200× 200 voxels containing letters MERL. (a) True image. (b) Conventional
image formation via (6). (c) Method based on image domain sparsity [6]. (d) Proposed method.

The imaging results are shown in Fig. 2(b)–(d), where from
top to bottom, we plot the reflectivity of (b) conventional
approach, (c) approach from [6], and (d) our proposed ap-
proach. The color intensity in the image represents the intensity
of the recovered reflectivity. The results illustrate that in the
compressive regime with limited data-collection, conventional
linear methods produce degraded images that exhibit low res-
olution in both azimuth and elevation. Both sparsity-driven ap-
proaches significantly improve the reconstruction performance
by removing missing-data artifacts. However, the proposed TV-
based approach yields substantially better images compared to
the one based on image-domain sparsity. In particular, one
can observe that the the buildings recovered under TV have a
desirable piecewise-smooth nature with sharp edges.

From computational perspective, the proposed reconstruc-
tion takes about 4 minutes per iteration for a 200× 200× 200
3D map using MATLAB on a 3.6 GHz Intel Xeon CPU, and
requires less than 50 iterations for convergence.

To conclude, we presented a 3D TV-based compressive
imaging method that fuses multi-baseline multi-PRF data from
radar platforms. Imaging results on simulated data showed the
potential of the method to recover 3D reflectivity maps of an
area of interest when number of baselines is small.
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