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ABSTRACT

We propose a new compressive imaging method for recon-
structing 2D or 3D objects from their scattered wave-field
measurements. Our method relies on a novel, nonlinear mea-
surement model that can account for the multiple scattering
phenomenon, which makes the method preferable in applica-
tions where linear measurement models are inaccurate. We
construct the measurement model by expanding the scattered
wave-field with an accelerated-gradient method, which is
guaranteed to converge and is suitable for large-scale prob-
lems. We provide explicit formulas for computing the gradi-
ent of our measurement model with respect to the unknown
image, which enables image formation with a sparsity-driven
numerical optimization algorithm. We validate the method
both analytically and with numerical simulations.

Index Terms— Computational imaging, inverse scatter-
ing, sparse reconstruction, total variation regularization.

1. INTRODUCTION

Some of the most difficult, yet important, problems in com-
putational sensing involve imaging objects that are hidden be-
hind an opaque medium. For example, identifying a tumor
inside a human body in medical diagnosis, detecting defects
within a structure in industrial testing, or visualizing the shape
of a multicellular organism in biology are all instances of this
fundamental problem of subsurface imaging. The most com-
monly used approach in such applications is based on probing
the medium with a controlled incident wave of a specific fre-
quency range that can penetrate the medium, and then to rely
on the physics of wave scattering to infer or visualize the spa-
tial distribution of the refractive index within the medium.

This problem of inferring the refractive index distribution
from the scattered wave-field is known as inverse scattering.
It is often formulated as a large-scale optimization that re-
lies on models for describing both the physical (forward or
measurement model) and signal-related (regularization, prior
constraints) aspects of the problem. Traditional approaches
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to inverse scattering are based on linear measurement models
that can be obtained by assuming a straight-ray propagation
of waves [1], or by adopting more refined scattering mod-
els based on the first Born [2] or Rytov approximations [3].
Recent works have demonstrated impressive imaging capa-
bility of the optimization-based approaches that also incor-
porate prior constraints on the solution [4–6]. In particular,
dramatic improvements were obtained by relying on sparsity-
promoting regularization [7–9], which is an essential com-
ponent of compressive sensing [10, 11]. The basic motiva-
tion is that many natural objects are inherently sparse in some
transform domain and can be reconstructed with high accu-
racy even with a small amount of measured data.

Linear measurement models, though simple and efficient,
are only accurate for weakly scattering objects. This lim-
its their applicability for imaging larger objects and/or those
with large refractive index contrasts. Recent experimental re-
sults also indicate that the resolution and quality of the re-
constructed image is improved when nonlinear measurement
models are used [12–19]. In particular, nonlinear models can
account for multiple scattering and thus provide a more accu-
rate interpretation of the measured data.

We propose a new method for reconstructing the refrac-
tive index from measurements of the scattered wave-field.
This method combines our nonlinear forward model with
an edge-preserving total variation (TV) regularizer [20] and
forms images by solving a large-scale optimization prob-
lem. Our measurement model—called series expansion with
accelerated gradient descent on Lippmann-Schwinger equa-
tion (SEAGLE)—is based on formulating wave-scattering
as a smooth optimization subproblem and using Nesterov’s
fast gradient method [21] to iteratively approximate the scat-
tered wave. The key advantage of SEAGLE is its guaranteed
convergence, even for objects with large refractive index con-
trasts. We provide explicit formulas for computing the gradi-
ent of our measurement model with respect to the refractive
index, which enables large-scale 2D and 3D imaging using
fast iterative shrinkage/thresholding algorithm (FISTA) [22].
We validate our forward model and reconstruction method
analytically and with numerical simulations.
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Fig. 1. A schematic representation of a scattering scenario. An
object with a scattering potential f(x), x ∈ Ω, is illuminated with
an input wave uin, which interacts with the object and results in the
wave-field u measured at two sensor regions (solid lines in the left
and right).

2. MAIN CONTRIBUTION

Our approach expands the scattered wave field with the iter-
ates of Nesterov’s accelerated gradient descent and efficiently
computes the derivative of the field with respect to the object.
The inverse problem is formulated as a TV-regularized data
fitting with complex scattered-wave measurements.

2.1. Problem formulation

Consider a setup illustrated in Fig. 1 where the unknown
object resides inside the image domain Ω ⊆ RD, where
D ∈ {2, 3} . We want to recover the refractive index of the
unknown object given wave measurements atM point sensors
(on the vertical solid lines) and controllable sources (solid
circles). Monochromatic light scattering by nonuniform re-
fractive index can be described by the Lippmann-Schwinger
equation

u(x) = uin(x) +

∫
Ω

g(x− x′)f(x′)u(x′)dx′ (1)

where u(x) is the complex total electric field, uin(x) is the
complex incident electric field, g(x) is the free-space Green’s
function, f(x) , k2

b (1 − n(x)2) is the scattering potential,
which is assumed to be real and contains the map of refractive
index of the object n(x), and kb is the wavenumber of the
background medium. This integral is only over domain Ω as
f(x) is zero outside of Ω. The free-space Green’s function
in (1) is given by

g(x) ,

 −
j
4H

(1)
0 (kbr) for D = 2

−e
jkbr

4πr
for D = 3

, (2)

where r = ‖x‖2 andH(1)
0 is the Hankel function of first kind.

The Green’s function is obtained under the outgoing wave

boundary condition, Helmholtz equation
(
∇2 + k2

b

)
g(x) =

+δ(x), and the time-dependence convention where the phys-
ical electric field equals to Re{u(x)e−jωt}.

Eq. (1) provides a nonlinear relationship between the
wave-field u and the scattering potential f , whereas first Born
and Rytov approximations provide simplified linearized ver-
sions of this relationship. The inverse problem is to find an
estimation of f given the measurements of u at point sensors.

2.2. Algorithmic Expansion of the Wave Model

For points in the domain Ω, the discretized version of (1) can
be expressed as

u = uin + Gdiag(f)u, (3)

where the operator diag(·) forms a diagonal matrix from its
argument, u,uin ∈ CN , and f ∈ RN are the discretized ver-
sions of u, uin and f , respectively, and G ∈ CN×N is the
matrix representing the convolution with the Green’s function
within Ω, with N denoting the number of samples. Note that
the field outside Ω can be evaluated by using a different ma-
trix H, which corresponds to evaluating (1) at sensor points.

As a forward model, we propose to solve (3) for u by ap-
plying Nesterov’s fast gradient method to the following min-
imization problem

û(f) , arg min
u∈CN

{
1

2
‖uin −Au‖22

}
, (4)

where A , I−Gdiag(f). The full procedure is summarized
in Algorithm 1, which we call SEAGLE. Note the dependence
of the solution û on the scattering potential f and the fact that
it can be interpreted as an expansion of the wave-field with
the iterates of the accelerated gradient descent method.

Algorithm 1 Forward model computation
Require: uin, f , G, H, number of iterations K, tolerance gtol

and initial field uinit = uin

1: u−1 ← uinit, u0 ← uinit, t0 ← 0
2: for k ← 1 to K do
3: tk ← (1 +

√
1 + 4t2k−1)/2,

4: µk ← (tk−1 − 1)/tk
5: yk ← uk−1 + µk(uk−1 − uk−2)
6: v←AH(Ayk − uin) . gradient at yk
7: if ‖v‖2 < g tol then K ← k, break for loop
8: γk ← ‖v‖22/‖Av‖22
9: uk ← yk − γkv

10: û← uin + Hdiag(f)uK
11: return the predicted field at sensors û, as well as uK ,
{γk}, {yk}, and {µk}



2.3. Inverse problem

We formulate the inverse problem as the minimization

f̂ = arg min
f∈F

{D(f) + τR(f)} , (5)

where

D(f) ,
1

2
‖û(f)−m‖22 (6a)

R(f) ,
N∑
n=1

√√√√ D∑
d=1

([Ddf ]n)2. (6b)

Here, D is the quadratic data-fidelity term that measures the
discrepancy between the measured data m ∈ CM and the out-
put of SEAGLE forward computation û. The functional R is
D-dimensional isotropic TV regularizer, where Dd is the dis-
crete gradient operators along the axis d. The regularization
parameter τ > 0 controls the strength of regularization, while
the setF ⊆ RN is used for enforcing additional physical con-
straints on f such as, for example, non-negativity.

The two key steps of FISTA for solving the optimization
problem (5) are computing the ∇D and evaluating the proxi-
mal operator

proxγR(g) , arg min
f∈F

{
1

2
‖f − g‖22 + γR(f)

}
(7)

for some γ > 0 and g ∈ CN [22]. The proximal operator of
TV can be efficiently computed [23, 24].

The iterative structure of the SEAGLE forward computa-
tion allows for an efficient computation of the gradient, which
can be expressed as

∇D(f) = Re

{[
∂û

∂f

]H

(û(f)−m)

}
, (8)

with [∂û∂f ]ij = ∂ûi

∂fj
. By differentiating lines 10, 9 and 6 in Al-

gorithm 1 with respect to f and keeping {γk} constant, we ob-
tain an efficient error-back propagation rule for computing (8)
summarized in Algorithm 2. Note that the matrices Sk,Tk in
Algorithm 2 are implemented as operators on qk without the
need for an explicit storage in memory. The remarkable as-
pect of Algorithm 2 is that it explicitly provides the gradient
∇D that can be used for FISTA-based minimization of (5).
While the optimization problem (5) is generally non-convex,
we did not observe any practical convergence issues in our
simulations reported in Section 3.

2.4. Network interpretation

Figure 2 graphically illustrates Algorithms 1 and 2 as feedfor-
ward networks. Each square module represents the operation
in each iteration of SEAGLE, and the edges represent the vec-
tors as message carriers. A nice feature of SEAGLE is that it

Algorithm 2 Gradient computation
Require: m, û, f , uin, G, H, {γk}, uK , {yk}, {µk}

1: pK ← 0,
2: qK ← diag(f)HHH(û−m)
3: rK ← diag(uK)HHH(û−m)
4: for k ← K to 1 do
5: Sk , I− γkAHA
6: Tk , diag(GH(Ayk − uin))H + diag(yk)HGHA
7: pk−1←−µkSkqk
8: qk−1← pk + (1 + µk)Skqk
9: rk−1← rk + γkTkqk

10: return ∇D(f) = Re{r0} the gradient in (8)

Iter 1 Iter 2 Iter 3
u1uin u2 u3 û

G̃
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Fig. 2. The feed-forward network interpretation of SEAGLE for
K = 3: (a) forward computation; (b) gradient propagation

can easily incorporate additional modules for modeling other
physical phenomena. For example, we can prepend a mod-
ule representing an initialization with Rytov approximation
in front of the module Iter 1. Then, in the back propagation,
q0 and r0 are fed into the Rytov module in which the Ry-
tov inverse step is applied. The flexibility of SEAGLE will
be explored in future works for speeding up the computation
or for dealing with other measurement scenarios where only
intensity of the wave-field is preserved.

3. NUMERICAL RESULTS

3.1. Analytic validation of the forward model

In order to validate the forward model, we first consider two
simple scattering experiments where it is possible to derive
analytic forms of the scattered wave-fields: a 2D point source
scattered by a cylinder, and a 3D point source scattered by
a sphere (see Sections 3.8-3.11 in [25]). In both cases the
scatterers have diameters of 6 wavelengths (Fig. 3(a) and
3(c)). The wavelength is 74.9 mm, the grid size is 4.8 mm
(6 mm) and there are 250 points (128 points) along each
axis in 2D (3D). We define the contrast of an object as
max(|f |)/k2

b . In order to evaluate the performance quan-
titatively, we plot in Fig. 3(b) and 3(c) the normalized error,
‖û − utruth‖22/‖utruth‖22, where utruth is the analytic solution.
We additionally provide errors achieved when using the first
Born and Rytov approximations at 20% contrast. In Fig. 3(e)
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Fig. 3. Analytical validation of the proposed measurement model:
(a) A cylinder with a diameter of 6 wavelengths. (b) Normalized
errors for scattering from cylinders of varying contrast levels. (c) A
sphere with a diameter of 6 wavelength. (d) Normalized error for
scattering from spheres of varying contrast levels. (e) Analytic field
for a cylinder with a contrast level of 100%. (f) Corresponding field
computed by our forward model.

and 3(f), we provide visual comparison between the analytic
solution and the result of our model.

3.2. Inverse scattering experiment

We next use the proposed technique for reconstructing the
Shepp-Logan phantom in the ill-posed, strongly scattering,
and compressive regime (M = 25 × 338 and N = 250 ×
250). Specifically, we consider the setup in Fig. 1 where the
scattered wave measurements are generated by a high-fidelity
finite-difference time-domain (FDTD) [26] simulator. The
object is of size 84.9 cm× 113 cm and has a contrast of 20%.
We put two linear detectors on both sides of the phantom at
a distance of 95.9 cm from the center of the object, and each
detector has 169 sensors placed with spacing of 3.84 cm. The
transmitters are put on a line 48.0 cm left to the left detec-
tor. They are spaced uniformly in azimuth with respect to the
center of the phantom (every 5◦ within ±60◦). We setup a
120 cm × 120 cm square area for reconstructing the object,
with pixel size 0.479 cm. The wavelength of the illuminating
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Fig. 4. Reconstruction of the Shepp-Logan phantom of 20% con-
trast. (a) True image. (b)-(d) The reconstructed results with first
Born (FB) approximation, Rytov approximation, and our method.
(e) Evolution of the normalized reconstruction error. (f) Evolution
of the normalized data fit (‖û(f)−m‖22/‖m‖22)

light is 7.49 cm.
Fig. 4 summarizes the performances of the proposed

method, as well as two baseline methods based on the first
Born and Rytov approximations. All three approaches rely
on FISTA with TV regularizer of τ = 1.5 × 10−9‖m‖2.
In SEAGLE, we set K = 120, but the forward algorithm
may stop earlier when the objective function (4) is below
5×10−7×‖uin‖22. It is shown that SEAGLE outperforms first
Born and Rytov methods. It can be seen that due to the ill-
posed nature of the measurements, the reconstructed images
suffer from the missing frequency artifacts [27]. However,
our method is still able to accurately capture most features of
the object while the linear methods cannot.

4. CONCLUSION

Our method is suitable for compressive imaging in the pres-
ence of multiple scattering. It can handle both transmission
and reflection data, unlike alternative methods based on beam
propagation. It is additionally more stable compared to the
methods based on iterative Born approximations.
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