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Abstract—Multiple scattering of an electromagnetic wave as it
passes through an object is a fundamental problem that limits
the performance of current imaging systems. In this paper,
we describe a new technique—called Series Expansion with
Accelerated Gradient Descent on Lippmann-Schwinger Equation
(SEAGLE)—for robust imaging under multiple scattering based
on a combination of an iterative forward model and a total
variation (TV) regularizer. The proposed method can account for
multiple scattering, which makes it advantageous in applications
where single scattering approximations are inaccurate. Specifi-
cally, the method relies on a series expansion of the scattered wave
with an accelerated-gradient method. This expansion guarantees
the convergence of the forward model even for strongly scattering
objects. One of our key insights is that it is possible to obtain
an explicit formula for computing the gradient of an iterative
forward model with respect to the unknown object, thus enabling
fast image reconstruction with the state-of-the-art fast iterative
shrinkage/thresholding algorithm (FISTA). The proposed method
is validated on diffraction tomography where complex electric
field is captured at different illumination angles.

Index Terms—Diffraction tomography, nonconvex optimiza-
tion, sparse optimization, total variation, computational imaging.

I. INTRODUCTION

Reconstruction of the spatial permittivity distribution of
an unknown object from the measurements of the scattered
waves at different illumination angles is common in numerous
applications. Traditional formulations of the problem are based
on linearizing the relationship between the permittivity and the
measured wave. For example, if one assumes a straight-ray
propagation of waves, the phase of the transmitted wave can
be interpreted as a line integral of the permittivity along the
propagation direction. This approximation leads to an efficient
reconstruction with the filtered back-projection algorithm [1].
Diffraction tomography uses a more refined linear scattering
model based on the first Born or Rytov approximations [2]–[4].
It establishes a Fourier transform-based relationship between
the measured wave and the permittivity, and thus enables the
reconstruction of the latter with a direct numerical application
of the inverse Fourier transform.

Recent research in compressive sensing and sparse signal
processing has established that sparse regularization can dra-
matically improve the quality of reconstructed images, even
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Fig. 1: SEAGLE can be used to reconstruct the spatial distribu-
tion of dielectric permittivity from measurements of complex
scattered waves at different illumination angles. Illustration
using experimental data at 3 GHz: (a) ground truth; (b) using
full data; (c) 8× data reduction; (d) 64× data reduction.

when the amount of measured data is severely limited [5],
[6]. This has popularized optimization-based inverse scattering
approaches that combine linear forward models with regular-
izers that mitigate ill-posedness by promoting solutions that
are sparse in a suitable transform domain. One class of such
regularizers is total variation (TV) [7], which substantially
reduces undesired artifacts due to missing data [8]–[10].

The main advantage of imaging with linear forward mod-
els is that the reconstruction can be reduced to a convex
optimization problem that is relatively simple and efficient
to solve [11]–[14]. However, multiple scattering of waves
limit the validity of Born and Rytov approximations when
the objects are relatively large or have high permittivity
contrasts compared to the background [15]. Multiple scattering
is a fundamental problem in diffraction tomography and its
complete resolution would enable imaging through strongly
scattering objects such as human tissue [16]. As multiple scat-
tering leads to nonlinear forward models, the challenge is in
finding computationally tractable methods that can account for
the nonlinearity while also making the image reconstruction
tractable. To that end, we propose a new method that efficiently
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combines a nonlinear forward model with the TV regularizer,
thus enabling high-quality imaging from a limited number
of measurements. Figure 1 provides an example, illustrating
the quality of reconstruction for a strongly scattering object
from a public dataset [17]. In particular, the 320× 320 image
in Figure 1(d) was obtained from only 16 experimentally
collected measurements at different illumination angles.

A. Contributions

Our work builds upon prior work on inverse scattering that
has been applied to a variety of practical problems in opti-
cal, microwave, and radar imaging. The proposed method—
called Series Expansion with Accelerated Gradient Descent on
Lippmann-Schwinger Equation (SEAGLE)—further extends
this work by considering an iterative forward model that still
enables efficient sparsity-driven inversion. The performance
of SEAGLE is robust to large permittivity contrasts, data
reduction, and measurement noise.

The key contributions of this paper is a novel image recon-
struction strategy based on the explicit evaluation of the gradi-
ent of an iterative forward model with respect to the unknown
parameters that correspond to the permittivity of the object.
Specifically, we rely on the Nesterov’s accelerated-gradient
method (AGM) [18] to iteratively approximate the scattered
waves. The key benefit is the guaranteed convergence of the
latter even for objects with large permittivity contrasts, even
for general nonlinear functions of the scattered wave. Albeit,
the solution to AGM may not be unique if the functions are not
strongly convex. We additionally present extensive validation
of our approach on analytical, simulated, and experimental
data. The experimental data used in our evaluations comes
from a public dataset [17], which enables easy comparisons
with several other related approaches.

B. Related Work

Imaging systems, such as optical projection tomography
(OPT), diffraction tomography, optical coherence tomography
(OCT), digital holography, and subsurface radar, rely on the
linearization of object-wave interaction [8]–[10], [19]–[31].
Early work in microwave imaging has shown the promise of
accounting for the nonlinear nature of scattering [32]–[35].
These have been extended by a large number of techniques
incorporating the nonlinear nature of scattering. Several recent
publications have reviewed these methods [36]–[38], which
include conjugate gradient method (CGM) [39], [40], con-
trast source inversion method (CSIM) [41], hybrid method
(HM) [37], and recursive Born method (RBM) [42]. Some
recent work has explored the idea of statistical modeling of
multiple scattering for imaging through diffusive or turbid
media [43]–[45]. Other work has explored the combination
of nonlinear scattering with sparse regularization [45]–[48].
This paper extends our preliminary work [49] by including key
mathematical derivations, as well as more extensive validation
on experimentally collected data.

Recently, the beam propagation method (BPM) was pro-
posed for performing nonlinear inverse scattering in trans-
mission [48], [50]–[53]. BPM-based methods numerically

propagate the field slice-by-slice through the object. The
Jacobian matrix of BPM can be efficiently computed with
error backpropagation algorithm, which enables fast image
reconstruction. The nonlinear model presented here is based on
the Lippmann-Schwinger equation [54]. The main advantage
of the proposed formulation is that it accounts for both
transmitted and reflected waves. This makes the proposed
method more suitable when reflections are important.

The Lippmann-Schwinger equation, also known as the
Foldy-Lax multiple scattering model, has been extensively
used in the inverse scattering literature for imaging under wave
scattering [55], [56], diffuse optical tomography [57], [58],
impedance tomography [59], and for elastic wave scattering
problems [60]. The common theme involves first estimating
the contrast source reflectivity of the target by exploiting
the joint sparsity across multiple illuminations. Then, the
Lippmann-Schwinger equation is used to estimate the total
field, which in turn is used to separate the target permittivity
from the estimated contrast source reflectivity. Our proposed
method differs from these works in that we jointly estimate
the total field as well as the target permittivity in a closed loop
framework that allows us to exploit the spatial structure of the
target through regularization.

The problem setting in this paper is also related to that in
full-waveform inversion (FWI) [61]–[63] used in geophysical
applications. We propose an alternative approach for solv-
ing such problems, namely modeling the forward scattering
process using AGM and estimating the material parameters.
FWI-based methods often use a differential form of Helmholtz
equation, while we rely on integral-domain formulation given
by the Lippmann-Schwinger equation. Moreover, established
frameworks in FWI-based methods utilize Krylov based
solvers along with the adjoint state method [64] to estimate
the gradient of the forward wave propagation model with
respect to the permittivity. However, these methods rely on the
linearity of the wave equation as a function the scattered field.
Otherwise, for nonlinear functions of the scattered field, these
methods require iterative linearization which can become slow
and lacks convergence guarantees. Our AGM-based forward
model on the other hand is guaranteed to converge for general
nonlinear convex functions of the scattered field, and has the
same asymptotic convergence rate as Krylov-based methods
for strictly convex functions. Moreover, a key difference of
our method is in the combination of the AGM-based forward
model and sparsity-driven image reconstruction using the fast
iterative shrinkage/thresholding algorithm (FISTA) [65]. Our
experiments show that our formulation is promising, as it
enables fast, stable, and reliable convergence when working
with a limited amount of data.

The experimental data used in this paper comes from a
public dataset of complex wave-field measurements of several
objects at various illumination angles and frequencies [17].
Several other methods have been tested on this dataset [41],
[66]–[69]. This enables qualitative evaluation of the perfor-
mance of the proposed technique against other algorithms.
While many of the methods tested on the data use multi-
ple frequencies, the results here rely on a single frequency.
However, the method uses the latest techniques in large-scale
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Fig. 2: Schematic representation of the scattering experiment.
An object with a real scattering potential f(x),x ∈ Ω, is
illuminated with an input wave uin, which interacts with the
object and leads to the scattered wave usc measured at the
sensing region Γ represented with a green line.

optimization with sparse regularization, which enables sub-
sampling and leads to improvements in imaging performance.
We expect the performance of the proposed method to improve
further if multi-frequency measurements are incorporated.

II. FORWARD MODEL

The forward problem computes the scattered field given a
distribution of inhomogeneous permittivity, while the inverse
problem reconstructs this distribution. The model we propose
here can be interpreted as a series expansion based on the
iterates of the gradient method. This expansion can be made
arbitrarily accurate and is stable for high permittivity objects.
Additionally, it enables efficient computation of the gradient
of the cost function, which is essential for fast image recon-
struction. In this section we focus on introducing the forward
model, leaving the gradient evaluation and inversion to the
next section. Our derivations are for the scenario of a single
illumination, but the generalization to an arbitrary number of
illuminations is straightforward.

A. Problem formulation

Consider the scattering problem in Figure 2, where an object
of the permittivity distribution ε(x) in the bounded domain
Ω ⊆ RD, with D ∈ {2, 3}, is immersed into a background
medium of permittivity εb, and illuminated with the incident
electric field uin(x). We assume that the incident field is
monochromatic and coherent, and it is known inside Ω and
at the locations of the sensors Γ. The result of object-wave
interaction is measured at the location of the sensors as a
scattered field usc(x). The scattering of light can be accurately
described by the Lippmann-Schwinger equation inside the
image domain [54]

u(x) = uin(x)+

∫

Ω

g(x−x′) f(x′)u(x′) dx′, (x ∈ Ω) (1)

where u(x) = uin(x) + usc(x) is the total electric field,
f(x) , k2(ε(x)− εb) is the scattering potential, which is
assumed to be real, and k = 2π/λ is the wavenumber in

vacuum. The function g(x) is the Green’s function defined as

g(x) ,





j

4
H

(1)
0 (kb‖x‖`2) in 2D

ejkb‖x‖`2

4π‖x‖`2
in 3D,

(2)

where kb , k
√
εb is the wavenumber of the background

medium and H(1)
0 is the zero-order Hankel function of the first

kind. Note that the Green’s function satisfies the Helmholtz
equation (

∇2 + k2
b I
)
g(x) = −δ(x),

as well as the outgoing-wave boundary condition, and a time-
dependence convention under which the physical electric field
equals to Re

{
u(x)e−jωt

}
. The knowledge of the total-field

u inside the image domain Ω enables the prediction of the
scattered field at the sensor area

usc(x) =

∫

Ω

g(x− x′) f(x′)u(x′) dx′. (x ∈ Γ) (3)

The computation of the scattered wave is equivalent to
solving (1) for u(x) inside the image and evaluating (3)
for usc(x) at the sensor locations. Note that u is present on
both sides of (1) and that the relation between u and the
scattering potential f is nonlinear. The first Born and the Rytov
approximations [2]–[4] are linear models that replace u in (3)
with a suitable approximation that decouples the nonlinear
dependence of u on f . However, such linearization imposes
a strong assumption that the object is weakly scattering,
which makes the corresponding reconstruction methods not
applicable to a large variety of imaging problems [15]. Our
forward model described next is a fast nonlinear method
for solving (1) that overcomes the weakly scattering object
assumptions.

The results presented in this paper rely on the scalar theory
of diffraction, which yields accurate results when two condi-
tions are met: (i) objects are sufficiently large compared with
the wavelength; (ii) the measurements are taken sufficiently
far from the object. Experimental demonstration of this was
provided by Silver [70] and the applicability of scalar theory
to instrumentation was extensively discussion in the classical
literature in electromagnetics and optics [71], [72]. Note also
that both of these conditions are generally met in optical
imaging, which is an important 3D application area for the
method in this paper.

B. Algorithmic Expansion of the Scattered Waves

We separate the computation of the electric field into two
parts: the total field u(x) in the image domain and the
scattered field usc(x) at the sensors. The discretization and
combination of (1) and (3) leads to the following matrix-vector
description of the forward problem

y = H(u • f) + e (4a)
u = uin + G(u • f), (4b)

where f ∈ RN is the discretized scattering potential f , y ∈
CM is the measured scattered field usc at Γ, uin ∈ CN is the
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Algorithm 1 Forward model computation

intput: Image f ∈ RN , maximum number of iterations
K, tolerance δtol, and initialization uinit = uin.
set: u−1 ← uinit, u0 ← uinit, t0 ← 0

1: for k ← 1 to K do
2: tk ← (1 +

√
1 + 4t2k−1)/2,

3: µk ← (1− tk−1)/tk
4: sk ← (1− µk)uk−1 + µku

k−2

5: g ← AH(Ask − uin) . gradient at sk

6: if ‖g‖2 < δtol then K ← k, break the loop
7: γk ← ‖g‖22/‖Ag‖22
8: uk ← sk − γkg
9: û ← uK

10: z ← H(û • f)
return: predicted scattered wave z, as well as û, {sk},
{γk}, and {µk}.

input field uin inside Ω, H ∈ CM×N is the discretization of the
Green’s function at Γ, G ∈ CN×N is the discretization of the
Green’s function inside Ω, the symbol • denotes a component-
wise multiplication between two vectors, and e ∈ CM models
the random noise at the measurements. Using the shorthand
notation A , I−Gdiag(f), where I ∈ RN×N is the identity
matrix and diag(·) is an operator that forms a diagonal matrix
from its argument, we can represent the forward scattering
in (4b) as a minimization problem

û(f) , arg min
u∈CN

{S(u)} (5)

with S(u) ,
1

2
‖Au− uin‖2`2 ,

where the matrix A is a function of f . The gradient of S can
be computed as

∇S(u) = AH(Au− uin). (6)

Since (5) corresponds to the optimization of a differentiable
function, it is possible to compute the total field û iteratively
using Nesterov’s AGM [18]

tk ←
1

2

(
1 +

√
1 + t2k−1

)
(7a)

sk ← uk−1 + ((tk−1 − 1)/tk)(uk−1 − uk−2) (7b)

uk ← sk − νAH(Ask − uin), (7c)

for k = 1, 2, . . . ,K, where u0 = u−1 = uin, q0 = 1, and
ν > 0 is the step-size. At any moment, the predicted scattered
field can be set to zk = H(uk •f) with uk given by (7c). Note
that the resulting set of fields {uk}k∈[1...K] and {zk}k∈[1...K]

can be interpreted as a K-term series expansion of the wave-
fields inside the object and at the sensor locations, respectively.
The full procedure for forward computation with a convenient
adaptive step-size is summarized in Algorithm 1.

There are strong parallels between the AGM-based formula-
tion of scattering and the popular Born series expansion [42],
[54]. Both approaches produce a sequence of wave-field
vectors {uk}k∈[1,...,K], starting from the initial u = uin. The
final field û is the linear combination of all the intermediate

Algorithm 2 Image formation with FISTA

input: scattered field y, initial guess f0, initial step
γ0 > 0, step reduction rate 0 < η < 1, and regularization
parameter τ > 0.
set: t← 1, f̃0 ← f0, q0 ← 1

1: repeat
2: γt ← γt−1/η
3: repeat . line search
4: γt ← ηγt
5: f t ← proxγτR(f̃ t−1 − γt∇D(f̃ t−1))

6: until D(f t) + τR(f t) ≤ Qγt(f t, f̃ t−1)

7: qt ← 1
2

(
1 +

√
1 + 4q2

t−1

)

8: f̃ t ← f t + ((qt−1 − 1)/qt)(f
t − f t−1)

9: t← t+ 1
10: until stopping criterion

return: estimate of the scattering potential f t.

Algorithm 3 Error backpropagation for ∇D(f)

intput: Image f ∈ RN , measurements y ∈ CM , input
wave field uin ∈ CN .

1: (z, û, {sk}, {γk}, {µk})← run Algorithm 1
2: qK+1 ← 0
3: qK ← diag(f)HHH(z− y)
4: rK ← diag(û)HHH(z− y)
5: for k ← K to 1 do
6: Sk , I− γkAHA
7: Tk , diag(GH(Ask − uin))

H + diag(sk)HGHA
8: qk−1 ← (1− µk)Skqk + µk+1S

k+1qk+1

9: rk−1 ← rk + γkT
kqk

return: ∇D(f) = Re{r0} the gradient in (10).

field vectors, which indicates that this is an expansion of
the field û with respect to K-terms, where each term brings
additional information about scattering. The traditional Born
series and SEAGLE are thus identical for K = 0, but yield
different intermediate fields for any other K. Crucially, while
Born series is known to diverge for strong scatterers, AGM
is guaranteed to converge for sufficiently large K, as (5) is a
smooth and convex optimization problem [18], [65], [73]

III. INVERSE PROBLEM

We now present the overall image reconstruction algo-
rithm, based on the state-of-the-art fast iterative shrink-
age/thresholding algorithm (FISTA) [65]. The application of
FISTA to nonlinear inverse scattering is, however, nontrivial
due to the requirement of the gradient of the scattered field
with respect to the object. We solve this by providing an
explicit formula, based on error backpropagation [74].

A. Image Reconstruction

We formulate image reconstruction as the following opti-
mization problem

f̂ = arg min
f∈RN

{D(f) + τR(f)} , (8a)



LIU et al.: SEAGLE: SPARSITY-DRIVEN IMAGING UNDER MULTIPLE SCATTERING 5

(a) (b). . .

h(u0,u0; f)
u1

h(u1,u0; f) . . . h(uK�1,uK�2; f)
uK�1u0

⇥ H
uK z(f)

f

+
qk+1

qk

1� µk+1

µk+2

Sk+2

Sk+1

qk+2

g(gk+1,gk+2)
(d)f�

(z(f)� y)

(c)

⇥ HH

qK
g(qK ,0)g(qK�1,qK). . .

. . .

qK�1q1

g(q1,q2)
q0

TKTK�1T1

+++ . . . rK�1rK�2r0

⇥ �u�

�K�K�1�1

++

uk�1

uk�2

1� µk

µk

uk

h(uk�1,uk�2; f)

Sk

bk
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Hu0 that

depend on the scattering potential f . (a) Forward model computation corresponding to Algorithm 1 for K forward iterations.
Adaptable parameters are marked in blue. (b) The schematic view of a single forward iteration. (c) Error backpropagation
corresponding to Algorithm 3 for K iterations. (d) The schematic view of a single backward iteration. The notation v∗ indicates
the elementwise complex conjugation of the vector v. Note that the algorithm does not require physical storage of matrices,
as they can be efficiently implemented as convolutions using FFT.

where

D(f) ,
1

2
‖y − z(f)‖2`2 and (8b)

R(f) ,
N∑

n=1

‖[Df ]n‖`2 =

N∑

n=1

√√√√
D∑

d=1

|[Ddf ]n|2. (8c)

The data-fidelity term D measures the discrepancy between
the actual measurements y and the ones predicted by our
scattering model z. The function R is the isotropic TV
regularizer and the parameter τ > 0 controls the strength of
the regularization, where D : RN → RN×D is the discrete
gradient operator with matrix Dd denoting the finite difference
operation along dimension d.

The image can then be formed iteratively using a first order
method such as ISTA [75]–[77]

f t ← proxγτR
(
f t−1 − γ∇D(f t−1)

)
, (9)

for t = 1, 2, 3, . . . or its accelerated variant FISTA [65]
summarized in Algorithm 2. Note that the algorithm relies
on the definition of the quadratic upper bound

Qγ(x, y) , D(y) +∇D(y)T(x− y) +
1

2γ
‖x− y‖22 + τR(x)

for setting the step-size parameter γ > 0 using the line search.
The operator proxγτR denotes the proximity operator, and for
isotropic TV it can be efficiently evaluated [14], [78]. Finally,
an efficient implementation of the imaging algorithm requires
the gradient of the data-fidelity term

∇D(f) = Re

{[
∂ z(f)

∂f

]H
(z(f)− y)

}
, (10)

which can be evaluated explicitly using Algorithm 3.
The mathematical derivation of Algorithm 3 is given in

Appendix I. It is similar to the derivation of the standard
backpropagation used in deep learning [74], [79]. Figure 3
visually illustrates the steps required for the forward model

and backpropagation computations in Algorithm 1 and Algo-
rithm 3, respectively. In particular, Figure 3(a) and Figure 3(b)
illustrate the way intermediate iterates are combined during the
K forward iterations and the schematic of a single iteration,
respectively. Similarly, Figure 3(c) and Figure 3(d) illustrate
the computation of intermediate iterates in K backward itera-
tions and the schematic of a single such iteration, respectively.
Note that the algorithm does not need to explicitly store the
matrices, as they can be implemented as convolutions using
the fast Fourier transform (FFT) algorithm. Thus the memory
required for the algorithm only includes the storage of iterate
vectors in Algorithm 3. The overall per iteration complexity
of SEAGLE for each illumination is O(KN logN) where K
is the number of AGM terms and N is the dimension of the
imaging domain.

One of the key benefits of SEAGLE is that it offers
high levels of parallelism making it well suited for GPU
implementations. In particular, computations can be treated
independently in parallel for each illumination, which greatly
reduces the computational cost of image formation. It is
possible to further reduce the cost of each imaging iteration,
by considering the incremental variant of Algorithm 2 that
processes only a subset of illuminations at each iteration [80].

While the theoretical convergence of FISTA is difficult
to analyze for nonconvex functions, it is often used as a
faster alternative to the standard gradient-based methods in
the context deep learning and broader machine learning [81]–
[83]. In fact, we observed that our method reliably converges
and achieves excellent results on a wide array of problems, as
reported in Section IV.

IV. EXPERIMENTAL EVALUATION

We now present the results of validating our method on
analytically obtained scattering data for simple scenarios,
scattering data obtained with a high-fidelity simulator, and
experimentally collected data from the public dataset [84].
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Note that all the image reconstruction results reported in this
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A. Validation on analytic data

In the first set of experiments, we validated our forward
model for two simple objects where analytic expressions
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Fig. 6: Comparison of the proposed approach with baseline
methods on simulated data. (a) Shepp-Logan at 20% contrast;
the reconstructed results with (b) the first Born approximation;
(c) the Rytov approximation, and (d) our method; (e) per-
iteration data fit; (f) per-iteration error.

of the scattered wave exist: a two-dimensional point source
scattered by a cylinder, and a three-dimensional point source
scattered by a sphere. The expressions are derived following
the mathematical formalism in [85], which we review in
Appendix II for completeness. As illustrated in Figures 4(a)
and (b), in both cases, the objects have diameters equal to 6
wavelengths. The wavelength is set to 74.9 mm, the source
is placed 1 m away from the center of the objects, the grid
size is set to 4.8 mm (6 mm), and there are 250 points
(128 points) along each axis in 2D (3D). The contrast of an
object is defined as max(|f |)/k2

b . In Figures 4(b) and (d), we
quantitatively evaluate the performance of our forward model
with the normalized error defined as

normalized error ,
‖û− utrue‖2`2
‖utrue‖2`2

, (11)

where û is the solution of (5) and utrue is the analytic
expression. For comparison, we additionally provide the per-
formance of the first-Born (FB) and Rytov approximations at
20% contrast. In Fig. 4(e) and 4(f), we demonstrate a visual
comparison between the analytic expression and the result of
our model. In 2D, the forward computations took 0.03, 0.18,
0.62, 1.3, 4.4, and 14.4 seconds for 5%, 10%, 20%, 30%,
50%, and 100% contrast levels, respectively. Similarly, in 3D,
the computations took 2.1, 7.7, 32, 200, and 981.7 seconds
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for the same contrast levels. Overall, we observed that, by
allowing for a large enough value of K, our forward model
can match the analytically obtained field with arbitrarily high
precision. The actual value of K depends on the severity
of multiple scattering and must be adapted on the basis of
the application of interest. For example, we observed that for
objects closely resembling biological samples, one generally
requires 10 ≤ K ≤ 30.

B. Validation on simulated data

We next validated the proposed technique for reconstructing
the Shepp-Logan phantom in an ill-posed, strongly scattering,
and compressive regime (M = 25 × 338 and N = 250 ×
250). Specifically, we consider the setup in Fig. 2 where the
scattered wave measurements are generated with an FDTD
simulator. The object is of size 84.9 cm × 113 cm. We place
two linear detectors on either side of the phantom at a distance
of 95.9 cm from the center of the object. Each detector has
169 sensors placed with a spacing of 3.84 cm. The transmitters
are positioned on a line 48.0 cm left to the left detector. They
are spaced uniformly in azimuth with respect to the center of
the phantom (every 5◦ within ±60◦). We set up a 120 cm ×
120 cm square area for reconstructing the object, with pixel
size 0.479 cm. The wavelength of the illuminating light is
7.49 cm.

We compare results of our approach against three alternative
methods. We regularize the solution of all the methods with
TV. As the first reference method, we consider the solution
of the linearized model based on FB, which is known to
be valid only for weakly scattering objects. Additionally, we
consider an inverse scattering approach that is based on the
Rytov approximation, which is known to be more robust to
moderate levels of scattering. Finally, we consider a popular
optimization scheme extensively used in optical imaging and
FWI, denoted AM for alternating minimization, for strongly
scattering objects that iteratively alternates between updating
the contrast function for a fixed field and updating the field for
a fixed contrast function [33], [39], [40]. All three methods
minimize the same error functional; however, each method
relies on a distinct forward model. Image reconstruction in
all the approaches was done using FISTA with TV regularizer
that was empirically set for the best performance. The order of
SEAGLE’s forward model is set to K = 120, but Algorithm 1
may terminate earlier when the objective function (5) is below
δtol = 5× 10−7‖uin‖2`2 .

Figure 5 summarizes the normalized error performance
‖f̂ − f‖2`2/‖f‖2`2 , where f and f̂ denote the true and estimated
object, of all the methods for various contrast levels between
1% and 15%. The results confirm that while all the methods
yield good performance at low contrasts, the performance
of linearized methods, FB and Rytov, degenerate as contrast
levels increase. One can also observe that the performance
of AM is similar to SEAGLE for low to moderate contrast
levels, but SEAGLE outperforms AM for higher contrasts.
In fact, we generally observed that the performance of AM
rapidly degenerates for very high contrast levels, while the
performance of SEAGLE is relatively stable.

Figure 6 summarizes the performance of the same methods
for the contrast level of 20%. We have omitted the result of
AM as the method was not able to reconstruct the image
at this high contrast level. The figure additionally provides
quantitative performance evaluation in terms of data fit

normalized data fit ,
D(f̂)

D(0)
=
‖z(f̂)− y‖2`2
‖y‖2`2

. (12)

Simulation results corroborate the benefit of using the pro-
posed method for strongly scattering objects. It can be seen
that, due to the ill-posed nature of the measurements, the
reconstructed images suffer from missing frequency arti-
facts [86]. However, the proposed method is still able to
accurately capture most features of the object while the linear
methods fail to do so. Note also, that our method was initial-
ized with the background value of the dielectric permittivity,
εb = 1, and that it takes fewer than 50 FISTA iterations
for converging to a stationary point (see convergence plot in
Figure 6(f)). It took SEAGLE about 1.5 seconds on average
to process an illumination at each FISTA iteration.

C. Validation on experimental data

We apply our method to three objects from the public
dataset provided by the Fresnel institute [17]: FoamDielExtTM,
FoamDielIntTM, and FoamTwinDielTM. These objects are
placed in a region of size 15 cm × 15 cm at the center of a
circular rim of radius 1.67 m and measured using 360 detectors
and 8 transmitters evenly distributed on the rim. The number
of transmitters is increased to 18 for FoamTwinDielTM and
are also uniformly spaced. In all cases, only one transmitter
is turned on at a time, while 241 detectors are used for each
transmitter by excluding 119 detectors that are closest to the
transmitter. While the full data contains multiple frequency
measurements, we only use the data corresponding to the
3 GHz. As before, we compare the result of our method
with the first-Born and Rytov approximations, as well as
AM, all regularized with TV. We set the highest order of
SEAGLE terms to K = 200 and the TV regularization to
τ = 0.25×10−8‖y‖2`2 , and run the image formation algorithm
for 40 FISTA iterations. The reconstruction was initialized
with the background value of the dielectric permittivity, which
in this case corresponds to εb = 1.

Figure 7 summarizes the imaging results on the experimen-
tal data. The quantitative evaluation is performed using the
same metrics as before. The results show that our method
successfully captures the shape of the objects, as well as
the value of the permittivity. Both first Born and Rytov
approximations underestimate the permittivity. One can also
see that the data-fit error for both of the linear forward models
remain high as iterations progress. On the other hand, the
object reconstructed by the proposed method closely agrees
with the measured data (see rightmost column in Figure 7). It
took the proposed method about 6.59 seconds on average to
process an illumination at each FISTA iteration.

Figure 8 illustrates the performance of our method when
using a limited number of measured data. In particular, we
consider the reconstruction of the same three objects, but
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reduce the number of measurements for each transmission
using regular downsampling by factors of 2, 4, 8, 16, 32, 64,
and 128. The full dataset consists of 8 transmissions with 241
measurements each; a factor of 128 downsampling reduces
to 8 transmissions with 2 measurements each. The size of
the reconstructed image is set to 320 × 320 pixels. The
reconstruction performance is quantified as

SNR (dB) , 10 log10

(
‖fref‖2`2
‖f̂ − fref‖2`2

)
, (13)

where fref is the reconstructed image with all the measured
data (see Figure 7). The visual illustration is provided for
FoamDielExtTM in Figure 1. This result highlights the stability
of the proposed method to subsampling and experimental
noise, even at highly nonlinear scattering scenarios.

Note that several other methods have been tested on this

dataset [41], [66]–[69]. Qualitative comparison of our results
in Figure 7 with the results of those methods indicates that
our approach achieves comparable performance using only a
fraction of data (i.e., a single frequency with possible sub-
sampling). Additionally, we observe a reliably stable and fast
convergence starting from the initialization to the background
permittivity, which is desirable in strongly scattering regimes.

V. CONCLUSION

In conclusion, we have demonstrated a nonconvex opti-
mization technique for solving nonlinear inverse scattering
problems. We have applied the technique to simulated and
experimentally measured data in microwave frequencies. The
scattering was modeled iteratively as a series expansion with
Nesterov’s accelerated-gradient method. By structuring the
expansion as a recursive feedforward network, we derived a
backpropagation formula for evaluating the gradient that can
be used for fast iterative image reconstruction. The algorithm
yields images of better quality than methods using linear
forward models and is competitive with state-of-the-art inverse
scattering approaches, tested on the same dataset. While the
optimization problem is not convex, we have observed that
the algorithm converges reliably within 100 iterations from
a constant initialization of the permittivity. Our approach
provides a promising framework for active correction of
scattering in various applications and has the potential of
significantly increasing the resolution and robustness when
imaging strongly scattering objects.
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APPENDIX I
DERIVATION OF ERROR BACKPROPAGATION

In this appendix, we provide the derivation of error back-
propagation applied to our method. The method essentially
computes the gradient of the data-fidelity term. This gradient
is a key step of updating the scattering potential in solving the
inverse problem. We now present the mathematical derivation
of the gradient computation and relate it to Algorithm 3.

The inputs of the error-back propagation are the data
mismatch and the intermediate variables ({sk}, {γk}, {µk},
û = uK) of the forward model computation, and the output
is the gradient. Here we follow the differentiation conventions
for vectors: (∂u∂f )ij = ∂ui

∂fj
and (∇fu)ij = [(∂u∂f )H]ij =

∂u∗
j

∂fi
.

All boldface lower-case variables are column vectors.
Let us begin with the gradient of D = 1

2‖z− y‖22.

∇fD =
1

2
∇f [(z− y)H(z− y)]

=
1

2
[(∇fz)(z− y) + ((z− y)H(∇fz)H)T]

=Re {(∇fz)(z− y)} . (14)

This can be evaluated by applying the chain rule to ∇fz and
all the variables composing z. The equations leading from the
initialization all the way to z are listed below:

z = uin + Hdiag(f)uK

sk = (1− µk)uk−1 + µku
k−2

uk = sk − γkAH(Ask − uin),

for k = 1, . . . ,K, where A , I−Gdiag(f), and u−1 = u0.
It is worth noting that, while the step-size γk also depends
on f , we ignore this dependency to simplify the computation.
The rationale for this simplification is that the step-size can be
replaced by a fixed one. Furthermore, in practice, γk attains a
stationary value for large enough k, which indicates that this
simplification has a negligible effect on backpropagation.

A. Initialization of backpropagation

The initialization in Algorithm 3 is obtained by differenti-
ating the first of the above equations with respect to f . With
diag(f)u = diag(u)f , we have

∇fz =

[
H
∂f

∂f
diag(uK) + Hdiag(f)

∂uK

∂f

]H

= diag(uK)HHH + (∇fu
K)diag(f)HHH (15)

The first term gives the remainder that contributes to the final
result while the second term gives the vector that multiplies
with ∇fu

K . For convenience, we define two sets of vectors:
• qk: the vector that multiplies with ∇fu

k

• rk: the remainder before computing (∇fu
k)qk.

In addition, due to the acceleration step in the forward compu-
tation, we expect subsequent qk−1 to have a contribution from
(∇fu

k+1)qk+1 in addition to the contribution from its direct
neighbor (∇fu

k)qk. This leads to the third set of vectors:
• pk: the explicit contribution of (∇fu

k+1)qk+1 to qk−1.

Finally, multiplying (15) with (z− y) we identify

rK = diag(uK)HHH(z− y) (16)

qK = diag(f)HHH(z− y). (17)

Since there is no term multiplying with ∇fu
K−1 explicitly

(hence nothing to pass to qK−1), we have

pK = 0. (18)

B. Recursive updates for uk

The computation of (∇fu
k)qk is the key step in error-back

propagation. We evaluate the gradient ∇fu
k by taking the

Hermitian of the derivative, and the multiplication with qk

follows. The result should be passed onto another gradient
with smaller k. Before we start, let us write out the gradient
of sk which is straightforward from its definition,

∇fs
k = (1− µk)∇fu

k−1 + µk∇fu
k−2. (19)

The derivative of uk is

∂uk

∂f
= −γk

∂AH

∂f
(Ask − uin)− γkAH ∂A

∂f
sk

+ (I− γkAHA)
∂sk

∂f
.

(20)

The first term becomes

−γk
∂AH

∂f
(Ask − uin) = γk

(
∂

∂f
diag(f)

)
GH(Ask − uin)

= γkdiag(GH(Ask − uin)),

and the second term becomes

−γkAH ∂A

∂f
sk = γkA

HG

(
∂

∂f
diag(f)

)
sk

= γkA
HGdiag(sk).

By taking Hermitian transpose of (20), we have

∇fu
k = γkT

k + (∇fs
k)Sk (21)

where

Tk = diag(GH(Ask − uin))
H + diag(sk)HGHA (22)

Sk = (I− γkAHA)H = I− γkAHA. (23)

By multiplying (21) with qk and substituting with (19), we
obtain the expression for (∇fu

k)qk,

(∇fu
k)qk = γkT

kqk

+ (∇fu
k−1)

[
(1− µk)Skqk

]

+ (∇fu
k−2)

[
µkS

kqk
]
.

(24)

Note that because we set u−1 = u0,

(∇fu
1)q1 = γ1T

1q1 + (∇fu
0)S1q1. (25)
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C. Error backpropagation equations

From equations (15) to (18), we have

(∇fz)(z− y) = rK + (∇fu
K)qK + (∇fu

K−1)pK (26)

Substituting (24) into (26), we have the following expressions

(∇fz)(z− y) = rK + (∇fu
K)qK + (∇fu

K−1)pK

= rK−1 + (∇fu
K−1)qK−1 + (∇fu

K−2)pK−1

= . . .

= r1 + (∇fu
1)q1 + (∇fu

0)p1 (27)

and the recursion relations for k = 2 . . .K

rk−1 = rk + γkT
kqk (28)

qk−1 = pk + (1− µk)Skqk (29)

pk−1 = µkS
kqk. (30)

For the case k = 1, or namely r0 and q0 (note that p0 does
not exist due to u−1 = u0), we plug (25) into (27),

(∇fz)(z− y) = r1 + γ1T
1q1 + (∇fu

0)
[
S1q1 + p1

]
.

Hence we have

r0 = r1 + γ1T
1q1 (31)

q0 = p1 + S1q1. (32)

In the initialization of our forward model, u0 is the incident
field and does not depend on f . Therefore ∇fu

0 = 0 and the
gradient of data-fidelity is

∇fD = Re {(∇fz)(z− y)} = Re
{
r0
}
. (33)

We summarize these recursion relations of error backpropaga-
tion in Algorithm 3 of the main text.

APPENDIX II
ANALYTIC SOLUTIONS TO SCATTERING

In this section, our aim is to present the analytic expressions
for scalar electric fields resulting from a point source outside
a dielectric sphere in 2D and 3D (strictly speaking, the 2D
case should be understood as an infinitely long line source
illuminating a cylinder parallel to it and looking at the cross-
section). A sketch of the derivation is provided after the actual
expressions. A more complete description can be found in a
number of standard textbooks such as [85].

A. Expressions

Consider a sphere of a radius rsph and a refractive index
n =

√
ε. The source is located rs distance away from the

center of the sphere and the wavenumber of the source outside
the sphere is kb.

2D case:
We consider the polar coordinates

r = (r cos θ, r sin θ),

and, without loss of generality, assume that the source is at
θs = 0. The field can be expressed as

E(r; rs) =

∞∑

m=−∞
Rm(r, rs)

ejmθ

2π
(34)

where ρ = kbr, ρsph = kbrsph and ρs = kbrs,

Rm(r, rs)

=





amJm(nρ)H
(1)
m (ρs), r < rsph

(bmJm(ρ) + cmYm(ρ))H
(1)
m (ρs), rsph ≤ r < rs

(bmJm(ρs) + cmYm(ρs))H
(1)
m (ρ), rs ≤ r

(35)

am =
−1

ρsph∆m
(36)

bm =
−π

2∆m

∣∣∣∣
Jm(nρsph) nJm−1(nρsph)
Ym(ρsph) Ym−1(ρsph)

∣∣∣∣ (37)

cm =
π

2∆m

∣∣∣∣
Jm(nρsph) nJm−1(nρsph)
Jm(ρsph) Jm−1(ρsph)

∣∣∣∣ (38)

∆m =

∣∣∣∣
Jm(nρsph) nJm−1(nρsph)

H
(1)
m (ρsph) H

(1)
m−1(ρsph)

∣∣∣∣ (39)

and Jm and Ym are the m’th order Bessel functions of the
first kind and the second kind, and H

(1)
m = Jm + jYm is the

m’th order Hankel’s function of the first kind.

3D case:
We consider the spherical coordinates

r = (r sin θ cosφ, r sin θ sinφ, r cos θ),

and, without loss of generality, assume that the source has
zenith angle θs = 0 and azimuthal angle φs = 0. The field
then reads

E(r; rs) =

∞∑

l=0

Rl(r, rs)

(
2l + 1

4π

)
Pl(cos θ) (40)

where, with ρ = kbr, ρsph = kbrsph and ρs = kbrs,

Rl(r, rs) =





Aljl(nρ)h
(1)
l (ρs), r < rsph

(Bljl(ρ) + Clnl(ρ))h
(1)
l (ρs), rsph ≤ r < rs

(Bljl(ρs) + Clnl(ρs))h
(1)
l (ρ), rs ≤ r

(41)

Am =
kb

ρ2
sphDm

(42)

Bm =
−kb
Dm

∣∣∣∣
jl(nρsph) njl+1(nρsph)
nl(ρsph) nl+1(ρsph)

∣∣∣∣ (43)

Cm =
kb
Dm

∣∣∣∣
jl(nρsph) njl+1(nρsph)
jl(ρsph) jl+1(ρsph)

∣∣∣∣ (44)

Dm =

∣∣∣∣
jl(nρsph) njl+1(nρsph)

h
(1)
l (ρsph) h

(1)
l+1(ρsph)

∣∣∣∣ (45)

and jl and nl are the l’th order spherical Bessel function of
the first kind and the second kind, h(1)

l = jl + jnl is the l’th
order of spherical Hankel function of the first kind, and Pl(x)
is the Legendre polynomial defined as

Pl(x) =
1

2ll!

dl

dxl
(x2 + 1)l. (46)
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B. Helmholtz equation
The Helmholtz equation for a point source is

∇2
rE(r, rs) + k2(r)E(r, rs) = −δ(r− rs) (47)

where E is the complex electric field at position r when the
point source is at rs and k2(r) is defined as

k2(r) = k2(‖r‖2) =

{
n2k2

b , for ‖r‖2 < rsph

k2
b , for ‖r‖2 > rsph

. (48)

Note that both 2D and 3D cases follow the same form. Their
difference is that r and rs have 2 or 3 coordinates.

C. Derivation for 2D case
We consider the polar coordinates, assume θs = 0 without

loss of generality, and use an ansatz for the electric field
in (34). With the Laplacian in the polar coordinate and the
following expansion of a 2D delta function [85]

δ(r− rs) =
1

r
δ(r − rs)

1

2π

∞∑

m=−∞
ejm(θ−θs), (49)

eq. (47) becomes a sequence of equations on Rm(r, rs)

∂

∂r

(
r
∂

∂r
Rm(r, rs)

)
+

(
rk2(r)− m2

r

)
Rm(r, rs)

=− δ(r − rs)

(50)

for each m. Each equations is a Bessel differential equation
so the solution can be composed of Bessel functions of order
m. The boundary conditions for Rm are as follows

1) finite value at r = 0
2) only outgoing component at r =∞
3) continuous and first-derivative-continuous at r = rsph

4) continuous at r = rs

5) ∂Rm

∂r

∣∣
r+s
− ∂Rm

∂r

∣∣
r−s

= − 1
rs

(integrate (50) around rs)
The above condition and equations lead to Eqs. (34)-(39).

D. Derivation for 3D case
We consider the spherical coordinates and assume that the

source lies on the zenith axis. The ansatz for the electric field
is (40), the expansion of a 3D delta function is

δ(r− rs) =
1

r2
δ(r − rs)

∞∑

l=0

l∑

m=−l
Y ml (θ, φ)Y ml (0, 0)

=
1

r2
δ(r − rs)

∞∑

l=0

(
2l + 1

4π

)
Pl(cos θ) (51)

and eq. (47) becomes

∂

∂r

(
r2 ∂

∂r
Rl(r, rs)

)
+
(
k2(r)r2 − l(l + 1)

)
Rl(r, rs)

=− δ(r − rs)
(52)

for each l. These equations are spherical Bessel equations and
there are corresponding spherical Bessel functions to compose
the solution. The boundary conditions for the solution are the
same as listed above except the last one becoming

∂Rl
∂r

∣∣∣∣
r+s

− ∂Rl
∂r

∣∣∣∣
r−s

= − 1

r2
s

. (integrate (52) around rs)
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