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Abstract—Randomized embeddings of scale-invariant image features
are proposed for retrieval of object-specific meta data in an augmented
reality application. The method extracts scale invariant features from a
query image, computes a small number of quantized random projections
of these features, and sends them to a database server. The server
performs a nearest neighbor search in the space of the random projections
and returns meta-data corresponding to the query image. Prior work
has shown that binary embeddings of image features enable efficient
image retrieval. This paper generalizes the prior art by characterizing
the tradeoff between the number of random projections and the number
of bits used to represent each projection. The theoretical results suggest a
bit allocation scheme under a total bit rate constraint: It is often advisable
to spend bits on a small number of finely quantized random measure-
ments rather than on a large number of coarsely quantized random
measurements. This theoretical result is corroborated via experimental
study of the above tradeoff using the ZuBuD database. The proposed
scheme achieves a retrieval accuracy up to 94% while requiring the
mobile device to transmit only 2.5 kB to the database server, a significant
improvement over 1-bit quantization schemes reported in prior art.

I. INTRODUCTION

Augmented Reality is one of the most significant applications to
leverage the recent advances in mobile device technology. In addition
to using smartphones and tablet computers to sense the real world
by capturing images, videos and sounds, people can augment that
experience by overlaying useful information on the real world data.
A well-known example of augmented reality is Google Goggles, an
application that allows a user to obtain meta information about her
environment, such as overlaying the name of a historical landmark
onto a recently acquired photograph, or recovering information about
a consumer product using an image of the product’s barcode. To
make such applications feasible and powerful, it is necessary to
exploit recent advances in image recognition while recognizing the
limitations on the speed, power consumption, memory, processing
time, and communication bandwidth at the mobile device. Thus, in a
typical augmented reality application, a mobile device must efficiently
transmit the salient features of the image that it has captured to a
remote database that contains a large number of images. The database
server should quickly determine whether the query matches an entry
in the database and return suitable augmented information to the
mobile device.

Much of the success of image-based augmented reality applications
is owed to the development of image descriptors such as SIFT [1],
SURF [2], GIST [3] and allied techniques. Of these, GIST captures
global properties of the image and has been used for image matching.
SIFT and SURF capture local details at several salient points in
an image, and therefore, have been used to match local features or
patches. They can also be used for image matching and retrieval by
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combining hypotheses from several patches using, for example, the
popular Bag-of-Features approach [4]. A comparative study of image
descriptors has shown that Scale Invariant Feature Transformation
(SIFT) features have the highest robustness against common image
deformations such as translation, rotation, and a limited amount of
scaling [5]. Nominally, a SIFT feature vector for a single salient point
in an image is a real-valued, unit-norm 128-dimensional vector. This
results in a prohibitively large bit rate required to transmit the SIFT
features to a database server for the purpose of matching, especially if
features from several salient points are needed for reliable matching.

There is a large body of work on training-based methods to
compress image descriptors [6]–[10]. Boosting Similarity Sensitive
Coding (BoostSSC) and Restricted Boltzmann Machines (RBM) have
been proposed for learning compact GIST codes for content-based
image retrieval [6]. Alternatively, semantic hashing can be trans-
formed into a spectral hashing problem in which it is only necessary
to calculate eigenfunctions of the GIST features, providing better
retrieval performance than BoostSSC and RBM [7]. Besides these
relatively recently developed machine learning algorithms, some clas-
sical training-based techniques such as Principle Component Analysis
(PCA) and Linear Discriminant Analysis (LDA) have also been used
to generate compact image descriptors. In particular, PCA has been
used to produce small image descriptors by applying techniques
such as product quantization [8] and distributed source coding [9].
Alternatively, small image descriptors were obtained by applying
LDA to SIFT-like descriptors followed by binary quantization [10].

While training-based methods perform accurately in traditional
image retrieval, they may become cumbersome in augmented reality
applications, where the database can keep growing as new landmarks,
products, etc. are added, resulting in new image statistics and
necessitating repeated training. As a source coding-based alternative
to training-based dimensionality reduction, a low-bitrate descriptor
has been constructed using a Compressed Histogram of Gradients
(CHoG) specifically for augmented reality applications [11]. In this
method, gradient distributions are explicitly compressed, resulting in
low-rate scale invariant descriptors. Two other techniques have been
proposed for efficient remote image matching based on Locality Sen-
sitive Hashing (LSH, [12]), which is computationally simpler, but less
bandwidth-efficient than CHoG, and does not need training. In the
first, random projections are computed from scale invariant features
followed by one-bit quantization, and the resulting descriptors are
used to establish visual correspondences between images captured in
a wireless camera network [13]. In the second, the same technique
is applied to content-based image retrieval, and a bound is obtained
for the minimum number of bits needed for a specified accuracy of
nearest neighbor search [14]. However, these works do not consider
the tradeoff between dimensionality reduction and quantization. It is



the intention of the present work to quantify this tradeoff, and to show
both theoretically and experimentally that finer quantization with
fewer random projections can be more bandwidth-efficient than LSH,
while retaining the advantages of simplicity and low complexity.

The remainder of this paper is organized as follows: Section II
provides a theoretical justification for performing a nearest neighbor
search using random projections, rather than using the original
image features. Starting from the Johnson-Lindenstrauss Lemma,
we describe a tradeoff between the number of random projections
and the fidelity of representing each projection, i.e., the quantization
step size. Section III leverages this result in a simple augmented
reality application in which a server returns meta data corresponding
to the query image, based on an approximate k-nearest neighbor
search in the space of quantized embeddings of scale-invariant image
features. Section IV describes experimental results of simulating the
augmented reality application using SIFT features extracted from
images from the ZuBuD database. Section V concludes the paper.

II. QUANTIZED RANDOMIZED EMBEDDINGS

Our work relies on a low-dimensional embedding of scale-invariant
feature points extracted from images. The use of embeddings is
justified by the following result which forms the starting point of
our theoretical development.

Theorem 1 (Johnson-Lindenstrauss Lemma [15]) For a real number
ε ∈ (0, 1) let there be a positive integer k such that

k ≥ 4

ε2/2− ε3/3 lnn

Then, for any set X ⊂ Rd that contains n points, there is a mapping
f : Rd → Rk, computable in randomized polynomial time, such that
for all u,v ∈ X ,

(1− ε)‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε)‖u− v‖2

In the above result and in the following development, ‖·‖ represents
the `2 norm. A key point is that for a given ε, the dimensionality k
of the points in the range of f is independent of the dimensionality
of points in X and proportional to the logarithm of number of
points in X . Since k grows like lnn, the Johnson-Lindenstrauss
Lemma establishes a dimensionality reduction result, in which any
set of n points in d-dimensional Euclidean space can be embedded
into k-dimensional Euclidean space. This is extremely beneficial for
querying huge databases (i.e., large n) with several attributes (i.e.,
large d). One way to construct the embedding function f is to project
the points from X onto a spherically random hyperplane passing
through the origin. In practice, this is accomplished by multiplying
the data vector with a matrix whose entries are drawn from a specified
distribution. In particular, a matrix with iid. N (0, 1) entries provides
the distance-preserving properties in Theorem 1 with high probability.
The following result, due to [16], [17], makes this notion precise.

Theorem 2 For real numbers ε, β > 0, let there be a positive integer
k such that

k ≥ 4 + 2β

ε2/2− ε3/3 lnn (1)

Consider a matrix A ⊂ Rk×d, whose entries a(i, j) are drawn iid.
from a N (0, 1) distribution. Let there be a set X ⊂ Rd that contains
n points. Then, for all u ∈ X , the mapping f(u) = 1√

k
Au satisfies

the distance preserving property in Theorem 1 with probability at
least as large as 1− n−β .

By construction, f(u) is a k-dimensional embedding of a d-
dimensional vector. Theorem 2 holds for other distributions on a(i, j)
besides the normal distribution [18]. In what follows, however, we
consider only the normal gaussian case. We are especially interested
in the distance-preserving property for quantized embeddings, i.e., the
case when a uniform scalar quantizer is applied independently to each
element of f(u) and f(v). Theorem 2 says that, in the unquantized
case, the embedding f is ε-accurate with probability 1 − n−β .
The question we ask is: What happens to the embedding accuracy
when quantization is employed to reduce the bit rate required to
store or transmit the embeddings? Furthermore, what is the tradeoff
between quantization and the number of projections k that can
be transmitted while remaining below a specified bit budget? The
following proposition is the first step in understanding those tradeoffs.

Proposition 1 For real numbers β > 0 and ε ∈ (0, 1), let there be
a positive integer k that satisfies (1). Consider a matrix A ⊂ Rk×d,
whose entries a(i, j) are drawn iid. from a N (0, 1) distribution. Let
there be a set X ⊂ Rd that contains n points. For any vector w,
let q(w) be an uniform scalar quantizer with step size ∆ applied
independently to each element of w. Then, for all u,v ∈ X , the
mapping g(u) = 1√

k
q (Au) satisfies

(1− ε)‖u− v‖−∆ ≤ ‖g(u)− g(v)‖ ≤ (1 + ε)‖u− v‖+ ∆

with probability at least as large as 1− n−β .

Proof: First, note that quantization, q (Au), introduces error at
most ∆/2 per dimension, i.e., ‖Au− q (Au)‖ ≤

√
k∆/2 for any

x. Using this, along with f(u) = 1√
k
Au as in Theorem 2, we get

‖f(u)− g(u)‖ ≤ ∆/2. Now, take the square roots in the statement
of Theorem 1 noting that, for ε ∈ (0, 1), 1 + ε ≥

√
(1 + ε) and

1− ε ≤
√

(1− ε), we get

(1 − ε)‖u − v‖ ≤ ‖f(u) − f(v)‖ ≤ (1 + ε)‖u − v‖

Then, the right half of the theorem statement follows from the triangle
inequality as

‖g(u)− g(v)‖ ≤ ‖g(u)− f(u)‖+ ‖f(u)− f(v)‖+ ‖f(v)− g(v)‖
≤ ∆/2 + (1 + ε)‖u− v‖+ ∆/2.

The left half is proved similarly.
It is evident from the proposition that the scalar quantization

interval ∆ is critical to the accuracy of the quantized embedding.
This, in turn, depends on the design of the scalar quantizer and
the bit-rate B used to encode each coefficient. In this work, we
consider a finite uniform scalar quantizer with saturation levels ±S,
that we assume to be set such that saturation is sufficiently rare
and can be ignored. Thus, B bits are used to uniformly divide
the range of the quantizer, 2S, making the quantization interval
∆ = 2−B+1S. Using R to denote the total rate available to transmit
the k measurements, i.e., setting B = R/k bits per measurement, the
quantization interval is ∆ = 2−R/k+1S. Thus the tradeoff, implicit
in Proposition 1, between number of measurements and number of
bits per measurement becomes more explicit:

(1− ε)‖u− v‖ − 2−
R
k

+1S

≤ ‖g(u)− g(v)‖ ≤

(1 + ε)‖u− v‖+ 2−
R
k

+1S, (2)

By shifting the origin to v, we can tighten the bound in the statement to:
(1− ε)‖u− v‖ − ∆

2
≤ ‖g(u)− g(v)‖ ≤ (1 + ε)‖u− v‖+ ∆
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Specifically, increasing the number of measurements for a fixed
rate R, decreases the available rate per measurement and, therefore,
increases the quantization interval ∆. This, in turn, increases the
quantization error ambiguity, given by the additive factor ±2−

R
k

+1S.
Furthermore, increasing the number of measurements reduces ε and,
therefore, reduces the ambiguity due to Theorem 2, given by the
multiplicative factor (1 ± ε). Note that, for fixed β and n, ε scales
approximately proportionally to 1/

√
k when small.

There are two issues we do not address in the development
above: non-uniform quantization and saturation. A non-uniform scalar
quantizer, tuned to the distribution of the measurements, may im-
prove embedding performance. However, it will still suffer the same
tradeoff between number of bits per measurement and number of
measurements. Detailed theoretical analysis of non-uniform quan-
tizers is beyond the scope of this paper. Similarly, adjusting the
saturation rate of the quantizer is a way to tune the quantizer to
the distribution of the measurements. Reducing the range of the
quantizer, S, reduces the quantization interval ∆ and the ambiguity
due to quantization. However, it increases the probability of saturation
and, consequently, the unbounded error due to saturation, making
the above model invalid and the theoretical bounds inapplicable. For
compressive sensing reconstruction from quantized random projec-
tions, careful tuning of the saturation rate has been shown to improve
performance [19]. However, taking quantization appropriately into
account in the context of nearest-neighbor computation and Johnson-
Lindenstrauss embeddings is not as straightforward and we do not
attempt it in this paper.

We also note that the above theoretical development partially
breaks down for quantization at 1-bit per measurement which is
performed just by keeping the sign of the projection. If one signal
in the set of interest is a positive scalar multiple of another, then
the two signals will be indistinguishable in the embedding. While
the guarantees still hold for bounded norm signals, they are often too
loose to be useful. Tighter bounds can instead be developed if we are
interested in the angles between two signals—i.e., their correlation—
instead of their distance. Examples of such developments for 1-bit
quantization can be found in [20]–[22].

III. EMBEDDINGS OF SCALE-INVARIANT IMAGE FEATURES

We now describe the proposed framework for retrieving object-
specific metadata from a query image using quantized embeddings
of scale-invariant features. The application scenario is as follows:
Alice wants more information about a query object, such as history
of a monument, or nutrition information for a food item. She uses
a mobile device – usually a tablet computer or a smartphone – to
acquire an image of the query object. The device sends information
about the query object to a database server. The server locates the
object in the database that most closely matches the query signal
according to some predetermined distance criterion, and transmits
the meta-data of that object back to Alice’s mobile device.

For such a scheme to be practical, the following requirements must
be met: (1) The mobile device should be able to generate a query
signal at low complexity (2) The bandwidth required to transmit the
query signal to the database server must be small (3) The server must
have either a fast algorithm or sufficient computing power to quickly
process the meta-data request (4) The server must transmit the meta-
data efficiently to the mobile device. In this work, we are concerned
with the first two requirements, which are the most challenging. We
note that most methods that speed up server-based matching and
enhance meta-data compression will only supplement the advantages
of the proposed system. Algorithm 1 describes the steps taken by the

server to prepare its database before deploying the augmented reality
service.

Algorithm 1 Database Preparation At Server

1: Initialize the random projection matrix A ∈ Rk×d, where the
elements a(i, j) ∼ N (0, 1).

2: Acquire images J1,J2...,Jt of s objects, where s ≤ t. Create
meta-data Di, i ∈ {1, 2, ..., s} for each object.

3: Run a scale-invariant feature extraction algorithm on each image
Ji, i ∈ {1, 2, ..., t} which will return several d-dimensional
features from each image. The number of features obtained from
each image need not be equal. Using all the feature vectors
thus obtained, construct the matrix V = [v1,v2, ...,vN ] which
contains feature vectors from all images of all objects in the
database. Typically, N � s.

4: Compute the matrix W = [w1,w2, ...,wN ] = AV ∈ Rk×N ,
where each wi is a k-dimensional random projection of the
corresponding vi.

5: Store a lookup vector Λ ⊂ {1, 2, ..., s}N where the element
λ(i), i ∈ {1, 2, ..., N} indexes the object from which the vector
wi was extracted.

Next, we describe the querying procedure in Algorithm 2, which
is executed at the mobile device using the same random projection
matrix A as the server. The distribution of the a(i, j) can be
approximated by a pseudorandom number generator. It is assumed
that, the seed of the pseudorandom number generator is sent to the
mobile device as a one-time software update or included as part of the
client software installation. This seed ensures that the mobile device
and the server generate the same realization of A.

Algorithm 2 Query Procedure At Mobile Device

1: Initialize the random projection matrix A ∈ Rk×d, where the
elements a(i, j) ∼ N (0, 1).

2: Acquire query image I.
3: Run the scale-invariant feature extraction algorithm on I to derive

the matrix X = [x1,x2, ...,xM ], where xi is a d-dimensional
feature vector corresponding to the ith key point descriptor from
the image I.

4: Compute the matrix Y = [y1,y2, ...,yM ] = AX ∈ Rk×M ,
where each yi is a k-dimensional random projection of the
corresponding xi.

5: Compute the matrix of quantized random projections Q = q(Y),
where the function q(·) is a scalar quantizer that takes each of the
kM elements of Y and produces, for each element, an integer
quantization index in the set {0, 1, ..., L− 1}.

6: Transmit the matrix Q to the server, using element-wise fixed
length coding of the quantization indices. Thus, each quantization
index is represented by dlog2 Le bits.

Based on Algorithm 2, the computational complexity at the mobile
device is primarily determined by the scale-invariant feature extrac-
tion algorithm, and one matrix multiplication. The number of bits
transmitted by the mobile device to the server is thus kMdlog2 Le
bits. To save on transmit power, the mobile device may reduce the
number of random projections k, the quantization levels L, or the
number of feature vectors M extracted from the query image.

Next, Algorithm 3 describes the approximate nearest neighbor
procedure executed by the server. Briefly, nearest neighbors are found
in the space of the quantized embeddings of image descriptors. The
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Fig. 1. The server uses Algorithm 3 to find the image that matches the
query image using approximate nearest neighbor search in the space of the
quantized embeddings of scale invariant features .

nearest neighbors are then aggregated to obtain the matching image,
and thence its meta-data. This is pictorially depicted in Fig. 1. In our
implementation of Algorithm 3, we use r = 10.

Algorithm 3 Approximate Nearest Neighbors
1: Initialize an s-dimensional “histogram” vector h to all zeros.
2: Receive Q = [q1,q2, ...,qM ] as a query. Receive L, the number

of quantization levels.
3: Invert the quantization function q(·) and obtain the reconstructed

random projection matrix Ŷ = q−1(Q) = [ŷ1, ŷ2, ..., ŷM ].
4: Compute Ŵ = q−1(q(W)), which contains the quantized recon-

struction of all k-dimensional random projections corresponding
to all t images of s objects.

5: for each i ∈ {1, 2, ...,M} do
6: Find the nearest neighbor of ŷi among ŵ1, ŵ2, ..., ŵN .
7: Out of these M nearest neighbor pairs, and choose r pairs

(ŷ(j), ŵ(j)), j = 1, 2, ..., r that are closest in Euclidean distance.
8: for each ŵ(j), j = 1, 2, ..., r do
9: Read off the index αj ∈ {1, 2, ..., s} of the object from which

the element occurs. This is readily available from the lookup
table Λ from Algorithm 1.

10: Increment h(αj) by 1.
11: Set the nearest object to the query image as arg maxα h(α) and

send the meta-data of this object back to the querying device.

If the quantizer codebook is known beforehand, the server can
optionally precompute Ŵ in the database preparation stage in
Algorithm 1, rather than repeating Step 4 of Algorithm 3 for each
query image. Finally, we note that if more images, or superior quality
images or richer meta-data become available at a later time, they can
be easily appended to the database without affecting the querying
algorithm executed by the mobile device.

IV. EXPERIMENTS

We conducted experiments on a public database to evaluate the per-
formance of meta-data retrieval using quantized embeddings of scale-
invariant features, to compare it against LSH-based techniques [13],

[14] and to validate our theoretical analysis. We used the ZuBuD
database [23], which contains 1005 images of 201 buildings in the
city of Zurich. There are 5 images of each building taken from
different viewpoints. The images were all of size 640× 480 pixels,
compressed in PNG format. One out of the 5 viewpoints of each
building was randomly selected as the query image, forming a query
image set of s = 201 images. The server’s database then contains the
remaining 4 images of each building, for a total of t = 804 images.

For the scale-invariant feature space used in Step 3 of Algorithms 1
and 2, we use the popular SIFT feature space [1]. Thus, SIFT features
are extracted from the server’s images to construct the matrix V in
Algorithm 1 and the matrix X in Algorithm 2. Clearly, it is desirable
that the meta-data transmitted to the mobile device corresponds to
the correct image, i.e., the nearest neighbor of the query image. To
measure the fidelity of the algorithm, we define the performance
metric as follows: Let Nq be the number of query images. In our
experiment Nq = 201. Let Nc be the number of query images
for which the meta-data transmitted at the end of Algorithm 3
corresponds to the correct image, as verified against ground truth.
Then, define Pcor = E(Nc/Nq) where the expectation is taken
over the randomness in the experiment, namely the realization of the
random projection matrix A. We repeat each experiment 30 times,
using a different random realization of A each time, average the
Nc/Nq values, and report the mean value as Pcor .

A. Performance Comparison with LSH-based schemes

Both the LSH-based schemes [13], [14] use random projections
of the SIFT vectors followed by 1-bit quantization according to the
sign of the random projections. We compared the accuracy of meta-
data retrieval achieved by the LSH-based schemes with our multi-bit
quantization approach. Fig. 2 shows the variation of Pcor against the
number of projections for the LSH-based schemes (in blue). This
is significantly inferior to meta-data retrieval based on unquantized
projections. Between the two extremes lie the performance curves of
the multibit quantization schemes. Using 4 or 5 bits per dimension
nearly achieves the performance of unquantized random projections.

Next, we determine experimentally whether there is a quantizer
that is “optimal” in the sense of achieving the highest Pcor per bit
when the total bit budget allocated for transmitting all the quantized
random projections was fixed. To investigate this, we plotted Pcor
against the number of bits needed to transmit each k-dimensional
descriptor, as shown in Fig. 3. When an L-level scalar uniform
quantizer is used independently on each dimension of the descriptor,
the number on the horizontal axis is simply kdlog2 Le bits. This
facilitates a comparison of all schemes for the same number of
transmitted bits. The multibit quantizer again gives higher probability
of correct retrieval than the LSH-based schemes, confirming that
taking few finely quantized projections can outperform taking many
coarsely quantized projections. Particularly, the 3 and 4-bit quantizers
provide the highest Pcor for a given bit budget, outperforming the
5-bit quantizer and indicating the existence of an optimal quantizer.

Each element of a SIFT vector lies between 0 and 1, and SIFT vectors
have approximately unit norm. We compared the partitions generated by
applying the Lloyd algorithm [24] to random projections of SIFT vectors
with those generated by a uniform quantizer. Owing to the small dynamic
range, as the number of bits per dimension is increased, the partitions from
Lloyd quantization rapidly coincide with those for a uniform quantizer applied
to a N (0, 1) random variable. Consequently the performance of uniform
quantization and Lloyd quantization was observed to be nearly identical.
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Fig. 2. Multi-bit quantization with fewer random projections outperforms
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Fig. 3. When the bit budget allocated to each descriptor (vector) is fixed,
the best retrieval performance is achieved with 3-bit and 4-bit quantization.

B. Experimental Validation of Theoretical Result

From (2), the error between the `2 distance between the SIFT
vectors and the `2 distance between their quantized embeddings
is ε‖u − v‖ + 2−

R
k

+1S with overwhelming probability. We now
plot this error value against the number of bits per dimension R/k
for the data in our experiments. To do this, we count the total
number of SIFT vectors used, n = 278345. The average value
of the pairwise distances between SIFT vectors, i.e., the average
value of ‖u− v‖, was computed to be 1.026. Further, the database
server has unquantized versions of all random projections from which
we obtain the maximum saturation level S = 5.203. Lastly, for
Proposition 1 to hold with very high probability, say 0.9999, we
must choose β = −(log 10−4)(logn)−1 = 0.7347. Plugging in the
values of β and n in (1) and neglecting the ε3 term in (1), we get
ε ≤

√
((1/k)(8 + 4β) lnn) = 11.71/

√
k.

Using the average value for ‖u−v‖ and the worst case value for
ε, we plot the different embedding error in Fig. 5 for various values
of the total bit budget R. It is observed that, over a large range of R
values, there exists an “optimum” value of bits allocated per random
projection, equivalently an optimum quantizer that achieves the
lowest embedding error. This corroborates the experimental finding
in the previous subsection.
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Fig. 5. Because of their low dimensionality, quantized random embeddings
achieve excellent retrieval performance at a fraction of the bit rate required
by a scheme that quantizes the underlying SIFT vectors.

C. Influence of Codebook Size on Retrieval Performance

To investigate the influence of quantizer granularity on retrieval
performance, we plot the probability of retrieving the correct meta-
data against a linearly increasing codebook size in Fig. 5. As a bench-
mark, we also plot the Pcor values for quantization applied directly
to the 128-dimensional SIFT features (d = 128). As expected, for a
given number of quantization levels, Pcor increases when the number
of random projections is increased. Further, for a fixed number of
random projections, Pcor increases when the number of quantization
levels – equivalently, the bits per dimension – is increased. The
quantized embeddings are significantly more bit-rate efficient than
SIFT. For instance, in order to achieve Pcor = 0.9, SIFT requires at
least 128×dlog2 3e = 256 bits per vector using the simple constant-
length encoding scheme. In comparison, the quantized embeddings
require only about 60 bits by using either (a) 15 projections with 4
bits per dimension, or (b) 20 projections with 3 bits per dimension.

D. Influence of the Query Size on Retrieval Performance

The query size is the total number of bits transmitted by the mobile
device to the database server. This is the product of the number of
random projections k, the bits per dimension R/k, and the total
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Fig. 6. Proposed scheme with 20 random projections & 4-bit quantization
achieves 94 % accuracy with a small average query size of 2.5 kB per image.

number of feature vectors M extracted from the query image in
Algorithm 2. Clearly, a lower query size is desirable. To change
the number of extracted SIFT features M , we change the threshold
below which the maxima from the Difference-Of-Gaussian (DOG)
scale space are ignored. In practice, the number of features extracted
for a preset threshold is image-dependent, thus the query size is also
image-dependent. Therefore, we report results based on the average
query size for 201 images from our query set in Fig. 6.

It is observed that highly accurate meta-data retrieval with Pcor =
0.94 is achieved with average query size 2.5 kilobytes per query
image. This is much smaller than the bit rate needed to transmit the
JPEG compressed query image using quality factor 80, which requires
58.5 kilobytes per image averaged over the query set. This justifies
our proposal to transmit quantized embeddings of SIFT features
rather than sending the JPEG compressed image to the database
server. Recall that we use a very simple method, i.e., constant length
coding, to transmit the quantized random projections. If a slight
increase in encoder complexity is tolerated, an entropy coder applied
to the quantization indices will further improve the performance.

V. DISCUSSION

This work has shown that randomized embeddings of scale invari-
ant image features can be used for image retrieval while consuming
much lower bit rate compared with directly using the scale invariant
features. The derived result and our experiments suggest that when
very few bits are available, then it makes sense to allocate them
towards increasing the number of incoherent measurements. However,
after a certain minimum number of random measurements is satisfied,
it is more beneficial to utilize any additional bits toward representing
these projections with high fidelity rather than continuing to increase
the number of coarsely quantized random projections.

There are several interesting avenues for future work in this
area. One area of interest is to study the privacy benefits of using
randomized embeddings. Specifically, is it possible to construct an
embedding that reveals the true distance between two images (or
image features) only if they are close, but reveals no information if the
images are far apart? In this paper, we compared our approach against
other randomized embedding approaches proposed in [13], [14]. An
additional item of interest is to compare the retrieval performance
vis-a-vis encoding complexity and upload bandwidth of our scheme
with methods such as [11] that explicitly compress the scale-invariant
descriptors using a vector quantizer.
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