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Abstract—We propose an online blind deconvolution approach

to sequential through-the-wall-radar-imaging (TWI) where the

received signal is contaminated by front wall ringing arti-

facts. The sequential measurements correspond to individual

transmitter-receiver pairs where the front wall ringing induces a

multipath kernel that corrupts the received target reflections. The

convolution kernels may vary across sequential measurements

but are assumed to be shared among targets viewed by a single

measurement. Our approach extends recent convex programming

formulations for blind deconvolution to the sequential measure-

ment scenario by formulating it as a low-rank tensor recovery

problem. We develop a stochastic gradient descent algorithm

that is capable of recovering the sparse scene and separating

out the delay convolution kernels. We demonstrate the recovery

capabilities of our approach on a synthetic scene as well as with

real TWI radar measurements.

I. INTRODUCTION

In Through-the-wall-imaging (TWI), the received radar
signal reflected from the targets is often corrupted with in-
direct multipath reflections from front wall ringing as well
as reflections off internal structures. This phenomenon often
results in ghost artifacts that clutter the reconstructed radar
image. Suppressing such multipath reflections can significantly
improve the quality of TWI and enhance the applicability of
the technique.

Several works have considered the problem of multipath
elimination by assuming perfect knowledge of the reflective
geometry of the scene [1]–[4]. These works either model
the propagation physics or build sparsifying dictionaries that
incorporate the sources of the multipath reflections in order
to remove artifacts. Other approaches formulate TWI as a
blind sparse-recovery problem where the wall parameters and
the sources of multipath are not known [5], [6]. While [5]
modeled the multipath effect as a delay kernel convolved with
a sparse primary impulse response of the targets in the scene,
[6] adopted a sparsity-based multipath exploitation framework
by allowing for uncertainties in wall-parameters that are solved
via an alternating optimization scheme.

We are interested in a TWI signal model where the target
reflections are convolved with an unknown delay-multipath
kernel due to the front wall ringing. In particular, we address
a scenario where the receivers obtain their measurements
sequentially, and where multipath reflections of all targets are
generated by a convolution kernel that may change between
different receivers. This setup is particularly suitable when
the antennas are directional and the targets are offset from

the antennas by a large standoff distance. This scenario was
addressed in [7] by proposing an online blind deconvolution
heuristic, based on sparse Kaczmarz iterations, to separate the
target reflections from the multipath kernels.

Recently, [8], [9] proposed convex programming solutions
for blind deconvolution. Consider a signal r 2 RNt composed
of the convolution of a kernel d = Bh,h 2 CNh and a signal
y = Ax restricted to the span of the columns of a matrix
A 2 CNt⇥M . Denote by Xo = hxH the lifted space signal
composed of the outer product of h and x. It was shown in [8]
that the signals h and x can be resolved from r by solving a
convex nuclear norm minimization problem in the lifted space
when Nh and M < cNt, 0 < c < 1 and for certain conditions
on A and B. Ling and Strohmer [9] later generalized the model
to the case where M > Nt but x is K-sparse with KNh <
c0Nt, 0 < c0 < 1, by solving an `1 minimization problem in
the lifted space.

In this paper, we extend the developments in [8], [9] to the
sequential TWI measurement model described in Section II.
Let rj = dj ⇤ yj be a single measurement observed by
a transmitter-receiver pair indexed by j 2 {1 . . . J}. The
measurement rj is composed of the convolution of a multipath
kernel dj = Bhj and the target impulse response yj = Ajx.
Our objective is to recover the sparse target reflectivity vector
x that is common across all the J measurements. We propose
a low rank tensor recovery problem in Section III in which the
tensor is composed of stacking the rank-1 outer product matri-
ces Xj = hjxH . To that end, we propose a stochastic gradient
descent algorithm that acts on the individual measurements rj
to separate the signals dj from yj and consequently recover
the sparse target reflectivity x. We evaluate the performance of
our scheme in Section IV by applying it to a synthetic scene
as well to real TWI radar measurements.

II. FRONT WALL RINGING MODEL

We consider a radar setup with Ns transmitting sources
and Nr receiving antennas. Let s(t) be the time-domain
waveform of the pulse that is transmitted by each source.
Denote by gp(t, nr, ns) the primary impulse response of the
scene, excluding multi-path reflections, viewed at receiver
nr 2 {1, . . . Nr} as a reflection of a pulse transmitted from
source ns 2 {1, . . . Ns}. Also denote by gm(t, nr, ns) the
impulse response of the multi-path reflections due to the front
wall ringing. Using a standard time-domain representation of
the received signal model, we express the received signal



r(t, nr, ns) as follows

r(t, nr, ns) = s(t) ⇤ (gp(t, nr, ns) + gm(t, nr, ns)) , (1)

where ⇤ is the convolution operator.

Without loss of generality, suppose that there are K tar-
gets in the scene, each inducing a primary impulse response
gk(t, nr, ns) indexed by k 2 {1 . . .K}. The multiples’ im-
pulse response can then be modeled by the convolution of a
delay kernel d(t, nr, ns) with the primary impulse response
gk(t, nr, ns) of each target object in the scene, such that,

gp(t, nr, ns) =
KP

k=1
gk(t, nr, ns),

gm(t, nr, ns) = d(t, nr, ns) ⇤
✓

KP
k=1

gk(t, nr, ns)

◆
.

(2)

In what follows, we use d(t, nr, ns) as an activation func-
tion that generates both the primary and multiple impulse
responses. Consequently, the received signal model can be
written as the superposition of the primary responses of all
K objects in the scene convolved with an activation function
as follows

r(t, nr, ns) = s(t) ⇤
KX

k=1

d(t, nr, ns) ⇤ gk(t, nr, ns), (3)

where d(t, nr, ns) is independent of k.

III. MULTIPATH REMOVAL AS ONLINE BLIND
DECONVOLUTION

A. Problem formulation

Let j be an index of the transmitter-receiver pair (nr, ns) 2
[Nr]⇥ [Ns] and let M = NxNyNz . Denote by rj 2 RNt the
received signal at transmitter and receiver locations (nr, ns),
where Nt is the number of time samples recorded by a
receiver for each transmission. Also denote by dj 2 RNt the
corresponding vectorized time-domain activation function. Let
S : RNt ! CNf be the source waveform matched-filtering
operator that maps rj to its frequency domain matched-filtered
response r̂j = Srj , where Nf is the number of sampled
frequency bins. We discretize the scene into an Nx⇥Ny⇥Nz

grid and construct the imaging operator Gj : CNf ! CM that
maps r̂j to the image x, such that

Gj(!, l) = ei!(k�(l)��(nr)k2+k�(l)��(ns)k2)/c, (4)

where ! is the frequency in radians, l is a spatial index in
Nx ⇥Ny ⇥Nz , c is the speed of the wave in free space, and
�(·) 2 R3 gives the spatial coordinate vector of scene index
l, receiver nr, and transmitter ns. Denote by Aj the Nt ⇥M
matrix Aj := SHGH

j
. The received signal model in (3) can

now be expressed as a function of the image x as

rj = dj ⇤Ajx+ nj , (5)

where nj is a noise vector. The combined imaging and
multipath removal problem can now be formulated as the
following nonlinear inverse problem

min
x,dj8j

1

2

X

j

krj � dj ⇤Ajxk22. (6)

As it stands, problem (6) is ill-posed. Fortunately, the signals
x and dj are structured in that x is sparse and dj = Bhj with

B =


INh

0

�
and Nh < Nt.

B. Convex blind deconvolution

1) Single measurement: The authors of [8] and [9] address
the case of a single measurement r = d ⇤ y, where d = Bh,
y = Ax, and B 2 CNt⇥Nh ,A 2 CNt⇥M . Denote by b̂n

and ân the nth rows of the Fourier transforms of the matrices
B and A, respectively, and by r̂ the Fourier transform of the
measurement vector r.

When M < cNt for some c 2 (0, 1), [8] shows that for
random matrices A and orthonormal matrices B, the signals h
and x can be recovered from r by showing that the minimizer
of the following nuclear norm minimization problem

min
X

kXk⇤ subject to r̂(n) = Tr
⇣
âH
n
b̂nX

⌘
, n = 1 . . . Nf

(7)
is the rank-1 matrix X0 = hxH with high probability. Here
r̂(n) is the nth entry of r̂. On the other hand, when M >
Nt and x is K-sparse, [9] shows that the minimizer of the
following `1 norm minimization problem

min
X

kXk1 subject to r̂(n) = Tr
⇣
âH
n
b̂nX

⌘
, n = 1 . . . Nf

(8)
is the rank-1 matrix X0 = hxH with high probability if
NhK < c0Nt for some c0 2 (0, 1).

2) Multiple measurements: In the case of multiple mea-
surements, we cast the blind deconvolution problem as a sparse
and low rank tensor recovery problem.

Let Xj = hjxH 2 CNh⇥K and denote by T 2 Nh⇥K⇥J
the tensor composed of stacking the matrices Xj . We follow a
tensor matricization approach and propose the following tensor
nuclear norm minimization problem

min
Xj

X

j

kXjk⇤ subject to r̂j(n) = Tr
⇣
âH
jn
b̂nXj

⌘
, 8j, n,

(9)
where âjn is the nth row of Âj , the Fourier transform of
the matrix Aj . Using the Frobenius norm proxy of the matrix
nuclear norm [10]

kXk⇤ = inf
x,h:X=hxH

1

2

�
kxk2

F
+ khk2

F

�
,

we recast the tensor recovery problem as follows

min
x,hj

J

2 kxk
2
2 +

1
2

P
j

khjk22

subject to r̂j(n) = (b̂nhj)(âjnx), 8j, n
(10)

When M > Nt and x is sparse, we may add a sparse
regularizer and rewrite the constraint as follows

min
x,hj

J

2 kxk
2
2 +

1
2

P
j

khjk22 + �kxk1

subject to r̂j = DB̂hj
Âjx, 8j,

(11)

where Du constructs a diagonal matrix with the vector u on
the diagonal, and B̂ is the Fourier transform of B. Note that
the following identity holds r̂j = DB̂hj

Âjx = DÂjx
B̂hj .



C. Alternating stochastic gradient descent for sequential TWI

We start by rewriting (11) in unconstrained form as the
regularized least squares problem

min
x,hj

F (x,hj) +G(x,hj), (12)

where F (x,hj) =
P
j

fj(x,hj) with fj(x,hj) = 1
2kr̂j �

DB̂hj
Âjxk22, and G(x,hj) =

P
j

gj(x,hj) + �kxk1, with

gj(x,hj) =
1
2

�
kxk22 + khjk22

�
.

Since the measurements are acquired sequentially, we con-
struct the quadratic approximation functions of x and hj as
follows

qx(x,xl,hl) = (x� xl)Hrxfj(xl,hl)
+ Lx

2 kx� xlk22 + 1
2kxk

2
2 + �kxk1

qh(h,xl,hl) = (h� hl)Hrhfj(xl,hl)
+ Lh

2 kh� hlk22 + 1
2khk

2
2,

(13)
where xl and hl are lth iterates, and Lx and Lh are step
sizes set larger than or equal to the Lipschitz constants of
fj with respect to x and hj . We then follow an alternating
minimization approach by alternately minimizing qx and qh,
such that,

xl+1 = argmin
x

qx(x,xl,hl)

= 1
Lx+1T

⇣
Lxxl + ÂH

j
DH

B̂hl
(r̂j �DB̂hlÂjxl);�

⌘
,

(14)
hl+1 = argmin

h
qh(h,xl+1,hl)

= 1
Lh+1

⇣
Lhhl + B̂HDÂjxl+1(r̂j �DÂjxl+1B̂hl)

⌘

(15)
where T (·;�) is the element-wise soft-thresholding operator
with threshold �.

Note that in radar imaging, the imaging operator matrices
Aj are not random. In fact, every matrix Aj has a large null
space since multiple points in the scene indexed by l can have
the same distance (k�(l)� �(nr)k2 + k�(l)� �(ns)k2) to the
transmitter-receiver pair (nr, ns). Therefore, for each new
measurement we run a relatively small number of stochastic
gradient descent iterations in order not to overfit each new
data measurement. We summarize our proposed approach in
Algorithm 1. Notice that in step 9 of the algorithm, we scale
the step size for x by

p
j following standard practice in

stochastic gradient descent algorithms [11].

IV. NUMERICAL RESULTS

We test the performance of our approach using a simu-
lated target and wall scene as well as using real TWI radar
measurements. In both cases, the scene is illuminated using a
stepped frequency pulse spanning a 5 GHz bandwidth centered
at 3.5 GHz. The antenna array is composed of 36 transmitting
and 36 receiving antennas collocated horizontally resulting in
one-dimensional multiple input multiple output (MIMO) linear
array. The horizontal spacing between the antennas is 4.29 cm
giving the array a horizontal aperture of 1.50 meters. The radar
scene is divided into a 93⇥ 133 grid spanning an area of 2 m

Algorithm 1 Online Blind Deconvolution using Alternating
Stochastic Gradient Descent

1: Input rj , Âj , B̂, �, maxiter
2: Output x, hj 8j 2 {1, . . . J}
3: Initialize j = 0, h0 = [1, 0, . . . 0]T

4: repeat

5: j = j + 1
6: x0 = xj�1

7: h0 = hj�1
8: for l = 1 to maxiter do

9: Lx =
p
jkÂH

j
DB̂hlk2F

10: xl+1 = 1
Lx+1T

⇣
Lxxl + ÂH

j
DH

B̂hl
(r̂j �DB̂hlÂjxl);�

⌘

11: Lh = kB̂HDÂjxl+1k2F
12: hl+1 = 1

Lh+1

⇣
Lhhl + B̂HDÂjxl+1(r̂j �DÂjxl+1B̂hl)

⌘

13: end for

14: xj = xl

15: hj = hl

16: until j � J
17: x = xJ
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Fig. 1: Simulated scene of a front wall with studs, two targets
located behind the wall, and a back wall. The colorbar indicates
the reflectivity of the objects in the scene.

azimuth by 4 m down range. The antenna array is centered at
location (0, 1) and positioned vertically.

A. Simulated scene

We first test our approach using an ideal simulated scene
illustrated in Fig. 1. The scene xo is composed of two targets
located behind a front wall that is supported by four studs as
well as a back wall. The colorbar shows the relative reflectivity
of the objects in the scene. For each pair of antenna positions
(nr, ns) indexed by j, we build the imaging operator Aj 2
CNt⇥M with Nt = 333 and M = NyNx = 93 ⇥ 133. Next,
we generate real valued measurement vectors rj = dj ⇤Ajxo,
where dj is a randomly generated convolution kernel of length
Nh = Nt/10. We set maxiter to 100, and set � = 50
when deconvolution is used and � = 10 when deconvolution is
disabled. The reason for using a smaller � when deconvolution
is disabled was that setting � = 50 suppressed also a large
portion of the targets in the image. We test two cases, the
first in which the convolution kernel dj remains constant
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Fig. 2: Blind deconvolution results using the proposed framework applied to the simulated scene when (a)–(c) the convolution
kernel is constant, and (d)–(f) the convolution kernel changes smoothly between measurements. The first column shows the true
convolution kernel compared to the estimate kernel. The second column shows the reconstructed scene using our alternating
stochastic gradient descent approach, and third column shows the reconstruction without performing deconvolution.

for all j, and the second where dj changes slowly between
measurements.

Fig. 2 illustrates the result of applying the proposed blind
deconvolution approach to separate the convolution kernels
from the sparse radar image. The figure shows that our method
successfully separates the convolution kernels from the image
when the kernel is constant and when it changes.
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Fig. 3: Schematic of the experimental layout.

B. Real TWI measurements

We built a radar setup using two horn antennas mounted
on a moving platform. The horn antennas were connected to
a signal source, in this case an Agilent 2-Port PNA model
5230A, which measured the scattering parameters of the scene.
The PNA was set to sweep over a frequency range from 1–
6 GHz and the port output power was set to 5 dBm. Over
this range of frequencies the horn antennas have approxi-
mately a 40 degree main lobe beam width and a gain near
7 dBi. By moving the antenna positions and repeating the
same experiment, we were able to collect radar measurements
corresponding to a 36 element virtual one dimensional MIMO
array. Additionally, at each position 20 scattering parameter
measurements were collected and averaged to reduce the noise
floor. The antennas were vertically offset by 24.5 cm so that
they can occupied the same horizontal positions. The vertical
offset also provided a relatively small aperture in the elevation
dimension which allowed us to generate three dimensional
radar images. We then used the antenna array to image a real
world three dimensional scene similar to the simulated scene
described above. Fig. 3 shows a schematic of the scene where
two corner reflectors were placed between two walls containing
aluminum studs.

The effect of estimating a convolution kernel and removing
its impact is evident when we compare the left and right



0.5 1 1.5 2 2.5 3 3.5 4
Down range (m)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Az
im

ut
h 

(m
)

-30

-25

-20

-15

-10

-5

0

(a)

0.5 1 1.5 2 2.5 3 3.5 4
Down range (m)

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Az
im

ut
h 

(m
)

-30

-25

-20

-15

-10

-5

0

Multipath

(b)

Targets

(c)

Targets

(d)

Fig. 4: (a)–(b) Recovered two dimensional scenes (a) using the proposed approach, and (b) using sequential sparse imaging
without deconvolution. (c)–(d) Recovered three dimensional scene (c) using the proposed approach, and (d) using sequential
sparse imaging without deconvolution.

columns in Fig. 4. For this dataset, we set maxiter to 50
and set � = 2. The top row shows the two dimensional
imaging results. Notice how the wall multipath is significantly
suppressed and internal structures (inside the circle) such as the
stair supports appear clearer when deconvolution is employed
in Fig. 4(a) compared to Fig. 4(b). The bottom row shows the
three dimensional imaging results. The arch-shaped structures
appear instead of vertically localized objects due to the small
aperture of the antenna array along the vertical axis. In this
case, the effect of deconvolution becomes more visible.

V. CONCLUSION

We presented an alternating stochastic gradient descent
algorithm for performing online blind deconvolution in sequen-
tial TWI. Our approach extends the recent convex program-
ming formulations for blind deconvolution to the sequential
measurement scenario by formulating it as a low-rank ten-
sor recovery problem. Using both simulated and real radar
measurements, we demonstrate that our approach effectively
removes the front wall ringing effect while maintaining the
direct target reflections.
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