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ABSTRACT

The problem of reconstructing an object from the measurements of
the light it scatters is common in numerous imaging applications.
While the most popular formulations of the problem are based on
linearizing the object-light relationship, there is an increased inter-
est in considering nonlinear formulations that can account for mul-
tiple light scattering. In this paper, we propose an image recon-
struction method, called CISOR, for nonlinear diffractive imaging,
based on our new variant of fast iterative shrinkage/thresholding al-
gorithm (FISTA) and total variation (TV) regularization. We prove
that CISOR reliably converges for our nonconvex optimization prob-
lem, and systematically compare our method with other state-of-the-
art methods on simulated as well as experimentally measured data.

Index Terms— Diffraction tomography, proximal gradient
method, total variation regularization, nonconvex optimization

1. INTRODUCTION

Estimation of the spatial permittivity distribution of an object from
the scattered wave measurements is ubiquitous in numerous appli-
cations. Although the classical linear scattering models such as the
first Born approximation [1] and the Rytov approximation [2] can
be solved by comparatively simple inverse algorithms, such models
are highly inaccurate when the physical size of the object is large or
the permittivity contrast of the object compared to the background
is high [3]. In order to be able to reconstruct strongly scattering ob-
jects, nonlinear formulations that can model multiple scattering need
to be considered. Recent work has been trying to integrate the non-
linearity and design new inverse algorithms to reconstruct the object.
Examples of nonlinear methods include iterative linearization [4, 5],
contrast source inversion [6–8], hybrid methods [9–11], and opti-
mization with error backpropagation [12–16].

A standard way for solving inverse problems is via optimization.
The cost function usually consists of a smooth data-fidelity term and
a non-smooth regularization term whose proximal mapping is easily
computed. For such cost functions, the proximal gradient method
ISTA [17–19] or its accelerated variant FISTA [20] can be applied.
Theoretical convergence analysis of FISTA is well-understood for
convex problems, whereas no convergence guarantee is known in
nonconvex cases. A variant of FISTA has been proposed in [21] for
nonconvex optimization with convergence guarantees. This algo-
rithm computes two estimates from ISTA and FISTA, respectively,
at each iteration, and selects the one with lower cost function value as
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Fig. 1: The measurement scenario considered in this paper.

the final estimate at the current iteration. Therefore, both the gradi-
ent and the cost function need to be evaluated at two different points
at each iteration. While such extra computation may be insignificant
in some applications, it can be prohibitive in the inverse scattering
problem, where additional evaluations of the gradient and the cost
function require the computation of the entire forward model.

In this work, we propose a new image reconstruction method
called Convergent Inverse Scattering using Optimization and Regu-
larization (CISOR). CISOR is based on our novel nonconvex opti-
mization formulation that can account for multiple scattering, while
enabling fast computation of the gradient of the cost functional. Ad-
ditionally, CISOR relies on our new relaxed variant of FISTA for
nonconvex optimization problems with convergence guarantees that
we establish here. Our new FISTA variant may be of interest on its
own as a general nonconvex solver. While we were concluding this
manuscript, we became aware of very recent related work in [22],
which considered a similar nonconvex formulation as in this paper.
However, the work in [22] uses FISTA to solve the nonconvex prob-
lem and does not have theoretical convergence analysis.

2. PROBLEM FORMULATION

The problem of inverse scattering is described as follows and illus-
trated in Figure 1. Suppose that an object is placed within a bounded
domain Ω⊂R2. The object is illuminated by an incident wave uin,
and the scattered wave usc is measured by the sensors placed in a
sensing region Γ⊂R2. Let u denote the total field, which satisfies
u(x)=uin(x)+usc(x),∀x∈R2. The scalar Lippmann-Schwinger
equation [1] establishes the fundamental object-wave relationship

u(x)=uin(x)+

∫
Ω

g(x−x′)u(x′)f(x′)dx′, ∀x∈R2.

In the above, f(x)=k2(ε(x)−εb) is the scattering potential, where
ε(x) is the permittivity of the object, εb is the permittivity of the



background, and k=2π/λ is the wavenumber in vacuum. The free-
space Green’s function in 2D is defined as g(x)=− j

4
H

(1)
0 (kb‖x‖),

where H(1)
0 is the Hankel function of first kind, kb=k

√
εb is the

wavenumber of the background medium, and ‖·‖ denotes the `2
norm. The discrete system is then

y=Hdiag(f)u+e

u=uin +Gdiag(f)u,
(1)

where f ∈RN , u∈CN , uin∈CN are N uniformly spaced samples
of f(x), u(x), and uin(x) on Ω, respectively, diag(f) is a diago-
nal matrix with f on its diagonal, and y∈CM is the measured scat-
tered wave at the sensors with measurement error e∈CM . The ma-
trix H∈CM×N is the discretization of Green’s function g(x−x′)
with x∈Γ and x′∈Ω, whereas G∈CN×N is the discretization of
Green’s function with x,x′∈Ω. The nonlinear inverse scattering
problem is then to estimate f in (1) given y, H, G, and uin.

3. PROPOSED METHOD

Our proposed method is based on a nonconvex optimization formu-
lation with total variation regularization. Let A :=I−Gdiag(f) and
Z(f) :=Hdiag(f)u. Moreover, let C⊂RN be a set that contains all
possible values that f can take, and we assume there exists a constant
M>0 such that ‖f‖≤M,∀f ∈C. We estimate f from (1) by solving
the following optimization problem:

f̂ =arg min
f∈RN

F(f) :=D(f)+R(f), (2)

with

D(f)=
1

2
‖y−Z(f)‖2, (3)

R(f)=τ

N∑
n=1

√√√√ 2∑
d=1

|[Ddf ]n|2 +χC(f), (4)

where Dd is the discrete gradient operator in the dth dimension,
hence the first term in (4) is the total variation (TV) regularizer. The
function χC(f)=0 if f ∈C and χC(f)=∞ otherwise.

3.1. Relaxed FISTA

We now propose a new variant of FISTA to solve (2) and provide its
theoretical convergence guarantee. Starting with some initialization
f0∈RN and setting s1 = f0, t0 =1, α∈ [0,1), for k≥1, the proposed
algorithm proceeds as follows:

fk=proxγR (sk−γ∇D(sk)) (5)

tk+1 =

√
4t2k+1+1

2
(6)

sk+1 = fk+α

(
tk−1

tk+1

)
(fk− fk−1), (7)

where the choice of the step-size γ to ensure convergence will be dis-
cussed in Section 3.2. Notice that the algorithm (5)-(7) is equivalent
to ISTA when α=0 and is equivalent to FISTA when α=1. For this
reason, we call it relaxed FISTA. Figure 2 shows that the empirical
convergence speed of relaxed FISTA improves as α increases from
0 to 1. The plot was obtained by using the experimentally measured
scattered microwave data collected by the Fresnel Institute [23]. Our
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Fig. 2: Empirical convergence speed for relaxed FISTA with various
α values tested on experimentally measured data.

theoretical analysis of relaxed FISTA in Section 3.2 establishes con-
vergence for any α∈ [0,1).

The two main elements of relaxed FISTA are the computation
of the gradient ∇D and of the proximal mapping proxγR. Given
∇D(sk), the proximal mapping (5) can be efficiently solved [24,25].
The following proposition provides an explicit formula for∇D.

Proposition 1. Define r :=Hdiag(f)u−y. Then we have

∇D(f)=Re
{

diag(u)H
(
HHr+GHv

)}
, (8)

where u and v are obtained from the linear systems

Au=uin, and AHv=diag(f)HHr. (9)

Proof. See Appendix 5.1.

Note that in the above, u and v can be efficiently solved by con-
jugate gradient. In our implementation, A is an operator rather than
an explicit matrix, and the convolution with the Green’s function is
computed using the fast Fourier transform (FFT) algorithm.

3.2. Convergence Analysis

The following proposition shows that the data-fidelity term (3) has
Lipschitz gradient on a bounded domain, which is essential to prove
the convergence of relaxed FISTA.

Proposition 2. Suppose that U⊂RN is bounded. Assume that
‖uin‖<∞ and the matrix A=I−Gdiag(s) is non-singular for all
s∈U . Then D(s) has Lipschitz gradient on U . That is, there exists
an L∈(0,∞) such that

‖∇D(s1)−∇D(s2)‖≤L‖s1−s2‖, ∀s1,s2∈U . (10)

Proof. See Appendix 5.2.

Notice that all fk obtained from (5) are within a bounded set
C, and each sk+1 obtained from (7) is a linear combination of fk

and fk−1, where the weight α
(
tk−1
tk+1

)
∈ [0,1) since α∈ [0,1) and

tk−1
tk+1
≤1 by (6). Hence, the set that covers all possible values for

{fk}k≥0 and {sk}k≥1 is bounded. Using this fact, we have the fol-
lowing convergence guarantee for relaxed FISTA.

Proposition 3. Let U in Proposition 2 be the set that covers all pos-
sible values for {fk}k≥0 and {sk}k≥1 obtained from (5) and (7),
L be the corresponding Lipschitz constant defined in (10). Choose
γ≤ 1−α2

2L
for any fixed α∈ [0,1). Define the gradient mapping as

Gγ(s) :=
s−proxγR (s−γ∇D(s))

γ
. (11)
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Fig. 3: Comparison of different reconstruction methods for various
contrast levels tested on simulated data.

Then, relaxed FISTA converges to a stationary point in the sense that
the gradient mapping norm satisfies

lim
k→∞

‖Gγ(sk)‖=0. (12)

Proof. See Appendix 5.3.

Note that in practice, one can use backtracking line search to
determine the value of γ when L is not known explicitly. Define
ŝ :=limk→∞ sk. We notice that Gγ(ŝ)=0 implies 0∈∂F(ŝ), where
∂F denotes the limiting subdifferential of F [26]. Hence, ŝ is a sta-
tionary point of F . Moreover, by (5) and (11), we have Gγ(sk)=
1
γ

(sk− fk). Therefore, (12) implies that limk→∞ ‖sk− fk‖=0,
thus limk→∞ fk=limk→∞ sk= ŝ. This establishes that the se-
quence {fk}k≥0 generated by relaxed FISTA converges to a station-
ary point of the nonconvex problem (2).

4. EXPERIMENTAL RESULTS

We compare CISOR with state-of-the-art methods, iterative lin-
earization (IL) [4, 5], contrast sourse inversion (CSI) [6–8], and
SEAGLE [15], as well as a linear method, the first Born approxima-
tion (FB) [1]. The proximal operator of TV in (5) is implemented
following [24]. CISOR uses the relaxed FISTA defined in Section3.1
with α=0.96 and fixed step-size γ, which is manually tuned. The
other methods use the standard FISTA, also with manually tuned γ.

Comparison on simulated data. Figure 3 shows the perfor-
mance of three algorithms on the simulated data using objects with
various contrast values. The contrast of an object f is defined as
max(|f |)/k2

b . We consider the Shepp-Logan phantom and change
its contrast to the desired value to obtain the ground-truth ftrue. We
then solve the Lippmann-Schwinger equation to generate the scat-
tered waves that are then used as measurements. The center of the
image is the origin and the physical size of the image is set to 120
cm× 120 cm. Two linear detectors are placed on two opposite sides
of the image at a distance of 95.9 cm from the origin. Each detec-
tor has 169 sensors with a spacing of 3.84 cm. The transmitters are
placed on a line 48.0 cm left to the left detector, and they are spaced
uniformly in azimuth with respect to the origin within a range of
[−60◦,60◦] at every 5◦. The wavelength of the incident wave is
7.49 cm and the pixel size is 0.94 cm. The reconstructed SNR, which
is defined as 20log10(‖ftrue‖/‖f̂− ftrue‖), is used as the comparison
criterion. For each contrast value and each algorithm, we run the
algorithm with five different regularization parameter values and se-
lect the result that yields the highest reconstructed SNR. Figure 3
shows that as the contrast increases, the reconstructed SNR of FB
and IL decreases, whereas that of CISOR is more stable.

Comparison on experimental data. We use two objects
from the public dataset provided by the Fresnel Institute [23]:
FoamDielExtTM and FoamDielintTM. The objects are placed within
a 15 cm × 15 cm square region centered at the origin of the coor-
dinate system. The number of transmitters is 8 and the number of
receivers is 360 for all objects. The transmitters and the receivers
are placed on a circle centered at the origin with radius 1.67 m and
are spaced uniformly in azimuth. Only one transmitter is turn on at
a time and only 241 receivers are active for each transmitter. That
is, the 119 receivers that are closest to a transmitter are inactive
for that transmitter. While the dataset contains multiple frequency
measurements, we only use the ones corresponding to 3 GHz, hence
the wavelength of the incident wave is 9.99 cm. The pixel size of
the reconstructed images is 0.12 cm.

Figure 4 provides a visual comparison of the reconstructed im-
ages obtained by different algorithms. For each object and each al-
gorithm, we run the algorithm with five different regularization pa-
rameter values and select the result that has the best visual quality.
Figure 4 shows that all nonlinear methods CISOR, SEAGLE, IL, and
CSI obtained reasonable reconstruction results in terms of both the
contrast value and the shape of the object, whereas the linear method
FB significantly underestimated the contrast value and failed to cap-
ture the shape. These results demonstrate that the proposed method
is competitive with several state-of-the-art methods. Two key advan-
tages of CISOR over other methods are in its memory efficiency and
convergence guarantees.

5. APPENDIX

5.1. Proof for Proposition 1

The gradient of D(·) is ∇D(f)=Re{JH
Zr}, where JZ is the Joco-

bian matrix of Z(f) :=Hdiag(f)u. Recall that A=(I−Gdiag(f))
and u=A−1uin, hence both A and u are functions of f and we
write u(f) and A(f) to emphasize the dependencies. Following the
chain rule of differentiation, we have

∂Zm
∂fn

=Hm,nun(f)+

N∑
i=1

[
∂ui(f)

∂fn

]
Hm,ifi.

Using the definition r=Z(f)−y and summing over m=1, ...,M ,

[∇D(f)]n=

M∑
m=1

[
∂Zm
∂fn

]∗
rm

=u∗n(f)

M∑
m=1

H∗m,nrm+

N∑
i=1

[
∂ui(f)

∂fn

]∗
fi

M∑
m=1

H∗m,irm

=u∗n(f)
[
HHr

]
n

+

N∑
i=1

[
∂ui(f)

∂fn

]∗
fi
[
HHr

]
i
, (13)

where a∗ denotes the complex conjugate of a∈C. Label the two
terms in (13) as T1 and T2, then

T1 =[diag(u∗(f))Hr]n , (14)

T2
(a)
= uH

in

[
∂A−1(f)

∂fn

]H
diag(f)HHr

(b)
=−uH

inA
−H(f)

[
∂A(f)

∂fn

]H
A−H(f)diag(f)HHr

(c)
=−uH(f)

[
∂A(f)

∂fn

]H
v(f)

(d)
= [diag(u∗(f))GHv(f)]n. (15)
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In the above, step (a) holds by plugging in ui(f)=
[
A−1(f)uin

]
i
.

Step (b) uses the identity

∂A−1(f)

∂fn
=−A−1(f)

∂A(f)

∂fn
A−1(f)

which follows by differentiating both sides of A(f)A−1(f)=I,

∂A(f)

∂fn
A−1(f)+A(f)

∂A−1(f)

∂fn
=0.

From step (b) to step (c), we used the fact that u(f)=A−1(f)uin

and defined v(f) :=A−H(f)diag(f)HHr, which matches (9). Fi-
nally, step (d) follows by plugging in A(f)=I−Gdiag(f). Com-
bining (13), (14), and (15), we have obtained the expression in (8).

5.2. Proof for Proposition 2

Let Ai=I−Gdiag(si), ui=A−1
i uin, zi=Z(si), ri=zi−y, and

vi=A−H
i Hdiag(si)ui for i=1,2. Then,

‖∇D(s1)−∇D(s2)‖≤‖diag(u1)HHHr1−diag(u2)HHHr2‖

+‖diag(u1)HGHv1−diag(u2)HGHv2‖.

Label the two terms on the RHS as T1 and T2. We will prove
T1≤L1‖s1−s2‖ for some constant L1>0, then the proof for T2≤
L2‖s1−s2‖ follows similarly.

T1≤‖diag(u1)HHHr1−diag(u2)HHHr1‖

+‖diag(u2)HHHr1−diag(u2)HHHr2‖
≤‖u1−u2‖‖H‖op‖r1‖+‖A−1

2 ‖op‖uin‖‖H‖op‖z1−z2‖,

where ‖·‖op denotes the operator norm and the last inequality
uses the fact that for a diagonal matrix diag(d), ‖diag(d)‖op =
maxn∈[N ] |dn|≤‖d‖.

‖u1−u2‖≤‖A−1
1 (A2−A1)A−1

2 ‖‖uin‖
≤‖A−1

1 ‖op‖G‖op‖s1−s2‖‖A−1
2 ‖op‖uin‖,

‖z1−z2‖≤‖Hdiag(s1)u1−Hdiag(s1)u2‖
+‖Hdiag(s1)u2−Hdiag(s2)u2‖
≤‖H‖op‖s1‖‖u1−u2‖+‖H‖op‖s1−s2‖‖A−1

2 ‖op‖uin‖.

Then the result T1≤L1‖s1−s2‖ follows by noticing that ‖s1‖,
‖uin‖, ‖G‖op, ‖H‖op, and ‖A−1

i ‖op for i=1,2 are bounded, and
the fact that ‖r1‖≤‖y‖+‖H‖op‖s1‖‖A−1

1 ‖op‖uin‖<∞.

5.3. Proof for Proposition 3

By (10), we have that for all x,y∈U ,

|D(x)−D(y)−〈∇D(y),x−y〉|≤ L
2
‖x−y‖2. (16)

By (5), we have that for all x∈U , t≥0,

R(x)≥R(ft)+〈st− ft
γ
−∇D(st),x− ft〉. (17)

Let x= fk, y= fk+1 in (16) and x= fk, t=k+1 in (17). Then,
adding the two inequalities, we have

F(fk+1)−F(fk)≤〈∇D(fk+1)−∇D(sk+1), fk+1− fk〉

+
1

γ
〈sk+1− fk+1, fk+1− fk〉+

L

2
‖fk+1− fk‖2 (18)

(a)

≤ L

2
‖sk+1− fk+1‖2 +

L

2
‖fk+1− fk‖2 +

1

2γ
‖sk+1− fk‖2

− 1

2γ
‖sk+1− fk+1‖2−

1

2γ
‖fk+1− fk‖2 +

L

2
‖fk+1− fk‖2

(b)

≤
(

1

2γ
−L
)(
‖fk− fk−1‖2−‖fk+1− fk‖2

)
−
(

1

2γ
− L

2

)
‖sk+1− fk+1‖2.

In the above, step (a) uses Cauchy-Schwarz, Proposition 2, as
well as the fact that 2ab≤a2 +b2 and 2〈a−b,b−c〉=‖a−c‖2−
‖a−c‖2−‖b−c‖2. Step (b) uses the condition in the proposi-
tion statement that γ≤ 1−α2

2L
and (7), which implies ‖sk+1− fk‖≤

α tk−1
tk+1
‖fk− fk−1‖, where we notice that tk−1

tk+1
≤1 by (6), and α<1

by our assumption. Summing both sides from k=0 to K:(
1

2γ
− L

2

)K−1∑
k=0

‖sk+1− fk+1‖2≤F(f0)−F(fK)

+

(
1

2γ
−L
)(
‖f0− f−1‖2−‖fK− fK−1‖2

)
≤F(f0)−F∗,

where F∗ is the global minimum. The last step follows by letting
f−1 = f0, which satisfies (7) for the initialization s1 = f0, and the fact
that F∗≤F(fK). Since Gγ(sk)= sk−fk

γ
, we have

lim
K→∞

K∑
k=1

‖Gγ(sk)‖2≤ 2L(F(f0)−F∗)
γL(1−γL)

<∞.

Therefore, limk→∞ ‖Gγ(sk)‖=0.
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