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ABSTRACT

We consider the problem of extracting descriptors that represent vi-
sually salient portions of a video sequence. Most state-of-the-art
schemes generate video descriptors by extracting features, e.g., SIFT
or SURF or other keypoint-based features, from individual video
frames. This approach is wasteful in scenarios that impose con-
straints on storage, communication overhead and on the allowable
computational complexity for video querying. More importantly,
the descriptors obtained by this approach generally do not provide
semantic clues about the video content. In this paper, we investi-
gate new feature-agnostic approaches for efficient retrieval of similar
video content. We evaluate the efficiency and accuracy of retrieval
when k-means clustering is applied to image features extracted from
video frames. We also propose a new approach in which the extrac-
tion of compact video descriptors is cast as a Non-negative Matrix
Factorization (NMF) problem. Initial experiments on video-based
matching suggest that compact descriptors obtained via low-rank
matrix factorization improve discriminability and robustness to pa-
rameter selection compared to k-means clustering.

Index Terms— k-means, NMF, descriptors, video retrieval

1. INTRODUCTION

The advent of inexpensive cameras and inexpensive storage has
made practical the collection and storage of large databases of im-
ages or video sequences. The commercial viability of such databases
depends in large part on the availability of search and retrieval tools.
Thus, much research activity has been devoted to retrieval mecha-
nisms for images. In general, such mechanisms rely on identifying
points of interest in an image, often referred to as keypoints, and
then extracting features from these points that are robust to varia-
tions in translation, rotation, scaling and illumination. Examples of
such features include SIFT [1], SURF [2], BRISK [3], FREAK [4],
HoG [5], CHoG [6] and others. To reduce the bandwidth and com-
plexity while preserving matching accuracy and speed, the features
are often aggregated and summarized to more compact descriptors.
Approaches for compacting the feature spaces include Principal
Component Analysis (PCA) [7], Linear Discriminant Analysis
(LDA) [8], Boosting [9], Spectral hashing [10], and the popular
Bag-of-Features approach [11]. The latter converts features to com-
pact descriptors (codewords) using the cluster centers produced by
k-means clustering. The compact descriptors extracted from a query
image, are then compared to those extracted from images in the
database in order to determine similar images. There has, how-
ever, been much less work in developing efficient feature matching
mechanisms for video queries.

Extending existing image descriptors to derive video descrip-
tors is not straightforward. One naive approach would be to extract
image descriptors from each frame in the video sequence, treating

frames as separate images. This approach fails to exploit the fact
that features extracted from successive video frames will be very
similar and describe similar keypoints, resulting in a very redundant
representation. Furthermore, it does not remove features that are
not persistent from frame to frame and probably do not describe the
video sequence very well. Thus, simply collecting individual image
descriptors would be bandwidth-inefficient and would significantly
increase matching complexity. A vastly more efficient approach is to
compress the descriptors derived from each video frame, exploiting
the motion of those descriptors through the sequence [12–14]. These
methods exploit powerful paradigms from video compression, such
as motion compensated prediction and rate-distortion optimization,
to reduce the bit-rate of the transmitted descriptors. They do not,
however, address the problem of discovering a small set of descrip-
tors that can represent the visually salient object.

In this paper, we investigate new approaches to video-based re-
trieval using compact descriptors. While we seek to leverage the ex-
tensive prior work on image descriptors for particular applications,
our goal is to provide a general (feature-agnostic) mechanism to ex-
tend image descriptors to compact video descriptors. Hence, our
experimental results will use SIFT descriptors, but our approach is
universally applicable for retrieval based on nearest-neighbor search.
Our first step is to evaluate the transmission efficiency and retrieval
accuracy achieved by performing k-means clustering of image de-
scriptors extracted from a video sequence. It is well-known that k-
means gives a locally optimal clustering that may be sensitive to the
initial conditions. As an alternative to performing k-means in the
traditional way, we propose a principled approach to the extraction
of compact video descriptors based on Non-negative Matrix Factor-
ization (NMF). There is a close fundamental relationship between
the rank of the descriptor matrix obtained via NMF and the number
of clusters in the k-means algorithm [15]. Nevertheless, our exper-
iments suggest that compact descriptors obtained via the NMF ap-
proach are more discriminative than those obtained via traditional
k-means, while also ensuring that the retrieval accuracy is much less
sensitive to the chosen number of clusters.

The following section provides some background on NMF and
establishes notation. Section 3 describes the proposed approach
which formulates the derivation of compact video descriptors as a
NMF problem. The proposed approach is experimentally validated
in Section 4. We discuss our results and conclude in Section 5.

2. NON-NEGATIVE MATRIX FACTORIZATION

Matrix factorization is an effective technique commonly used for
finding low dimensional representations for high dimensional data.
Anm×N matrixX is factored into two components L,R such that
their product closely approximates the original matrix

X ≈ LR. (1)



In the special case where the matrix and its factors have non-negative
entries, the problem is known as non-negative matrix factorization
(NMF). First introduced by Paatero and Tapper [16], NMF has
gained popularity in machine learning and data mining following
the work of Lee and Seung [17]. Several NMF formulations exist,
with variations on the approximation cost function, the structure
imposed on the non-negative factors, applications, and the computa-
tional methods to achieve the factorization, among others [18].

In this paper we examine NMF formulations proposed for clus-
tering [19, 20]. Specifically, we consider the sparse and orthogonal
NMF formulations. The orthogonal NMF problem is defined as

min
L≥0,R≥0

1

2
‖X − LR‖2F s.t. RRT = I, (2)

which was shown in [19] to be equivalent to k-means clustering.
Alternatively, the sparse NMF problem [20] relaxes the orthogonal-
ity constraint on R replacing it with an `1 norm regularizer on the
columns of R and a smoothing Frobenius norm on L. The sparse
NMF problem is explicitly defined as

min
L≥0,R≥0

1

2
‖X − LR‖2F + α‖L‖2F + β

N∑
i=1

‖R(:, i)‖21, (3)

where α and β are problem specific regularization parameters.
Note that NMF problems are non-convex; algorithms that tackle

these problems generally do not have global optimality guarantees.
Therefore, different algorithms that tackle the same problem may ar-
rive at different solutions. In what follows, we develop an algorithm
that addresses the orthogonal NMF problem and demonstrate that
the solutions produced by our algorithm enjoy better classification
properties compared to k-means and sparse NMF.

3. COMPACT SCENE DESCRIPTORS

Compact descriptors of visual scenes allow us to reduce the amount
of metadata that is compressed and stored with the video bitstream
while maintaining a discriminative representation of the scene con-
tent. Our framework assumes that local scene descriptors, such as
SIFT or HoG features, are extracted from every video frame in a
group of pictures (GOP). The descriptors are then stacked together
to form a matrix X of size m×N , where m is the length of the fea-
ture vector and N is the total number of descriptors extracted from
the GOP. In many situations, the number of descriptors N can reach
several hundred features per frame. Therefore, it is imperative that
these descriptors be encoded in a compact manner. In this section,
we develop a framework for extracting a compact descriptor that rep-
resents the salient visual information in a video scene.

3.1. Computing the Compact Descriptor Using NMF

We observe that visually salient objects in a video scene maintain
a nearly stationary descriptor representation throughout the GOP.
Therefore, we formulate the problem of computing a compact de-
scriptor of a video scene as that of finding a low dimensional rep-
resentation of the matrix X . Ideally, the set of feature vectors that
represent the salient objects in a GOP can be encoded using a matrix
L ∈ Rm×r , where r � N represents the number of descriptors
that distinctly represent the salient object. Fig. 1 illustrates the pro-
cess of extracting features from a video GOP and computing the low
dimensional representation L and selection matrix R.
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Fig. 1: Example of extracting SIFT features from a video scene and
computing the compact descriptor L along with the binary selection
matrix R.

In the case of SIFT descriptors, the columns in X are non-
negative unit norm vectors. Therefore, we compute compact descrip-
tors L̂ using the following non-negative matrix factorization (NMF)

(L̂, R̂) = min
L ∈ Rm×r

+ ,

R ∈ Rr×N
+

1
2
‖X − LR‖2F

subject to
{
‖Li‖2 = 1, ∀i ∈ {1, . . . r}
‖Rj‖0 = 1, ∀j ∈ {1, . . . N} ,

(4)
where Li and Rj are the columns of the matrices L and R indexed
by i and j, respectively, and R+ is the positive orthant.

In contrast to (2), the formulation in (4) explicitly requires that
only one column of L is used to represent each descriptor of X
through a single non-zero coefficient in the corresponding column
of R. This is equivalent to constraining RRT to be a diagonal ma-
trix but not necessarily the identity. Since L in (4) has unit norm
columns, the formulation in (2) is equivalent to (4), subject to a scal-
ing of the columns of L and, correspondingly, of R. This reformu-
lation enables the very efficient implementation described below.

From the discussion above, it follows that the NMF formula-
tion in (4) functions similar to a k-means classifier. For a large
enough r, the columns of L̂ will contain the cluster centers of dom-
inant features in the matrix X , while R̂ selects the cluster centers
in L̂ that best match the data. In order to solve (4), we develop the
projected proximal-point alternating least squares minimization al-
gorithm shown in Algorithm 1. In every iteration k of the algorithm,
the factors Lk and Rk are updated by first finding the minimizer of
the proximal least squares terms

L̃ = arg min
L∈Rm×r

1
2
‖X − LRk‖2F + ρ

2
‖L− Lk‖2F ,

R̃ = arg min
R∈Rr×N

1
2
‖X − LkR‖2F + ρ

2
‖R−Rk‖2F .

(5)

The columns of L̃ are then projected onto the non-negative `2 unit
ball, while the columns of R̃ are projected onto the admissible set of
standard basis vectors

Er := {ei ∈ Rr : e(i) = 1, and 0 otherwise, i ∈ {1, . . . r}}

by setting the largest non-negative entry in each column to one and



the remaining entries to zero. Note that L̃ and R̃ admit closed-form
solutions as shown in Algorithm 1. The factors L0 and R0 are ini-
tialized with independent identically distributed uniform random en-
tries. The iterates L̃ and R̃ are computed by solving proximal-point
alternating least squares functionals and then keeping only the pos-
itive entries L̃+ and R̃+ in the factors. Finally, the factors are pro-
jected onto the unit column norm ball for L̃, and onto the binary
selector set Er for R̃.

Algorithm 1 Projected Proximal-point Alternating Least Squares

1: Input X , factor rank r, ρ, maxiter
2: Output L̂, R̂
3: Initialize k = 0, L0 ∈ U[0,1], R0 ∈ U[0,1]

4: while not converged and k < maxiter do
5: Update the compact descriptor L
6: L̃ =

(
ρLk +XRTk

) (
ρIr +RkR

T
k

)−1

7: Lk+1,i = L̃+i/‖L̃+i‖2
8: Update the binary selector R
9: R̃ =

(
ρIr + LTk Lk

)−1 (
ρRk + LTk+1X

)
10: Rk+1,j = ProjEr

(R̃j), ∀j ∈ {1, . . . n}
11: k = k + 1
12: end while
13: L̂ = Lk, R̂ = Rk

3.2. Classification Using Compact Descriptors

Consider the problem of classifying a video scene with respect to
a database of video sequences. By extracting compact descriptors
L̂ from video GOPs, we can now reduce the problem of matching
all feature vectors in a query GOP with the features in the video
database to that of matching the compact descriptors between the
query GOP and the database GOPs.

Suppose that the query video as well as the database videos are
divided into GOPs of size n video frames. Let L̂Q denote the query
GOP’s compact descriptor and L̂D(g) denote the compact descrip-
tors of the database GOPs indexed by g. We say that a database GOP
indexed by ĝ matches the query GOP if it has the largest correlation
coefficient relative to L̂Q, i.e.

ĝ = argmax
g
‖L̂TQL̂D(g)‖∞, (6)

where the infinity norm ‖ · ‖∞ is applied after vectorizing the ma-
trix product L̂TQL̂D(g). Consequently, the matching GOP is the one
whose compact descriptor correlates most with the query descriptor.

4. EXPERIMENTAL RESULTS

We consider the problem of classifying scenes from six different
video sequences. We choose the reference video sequences1: Coast-
guard, Bus, Soccer, Football, Hall monitor, and Stefan composed
of CIF resolution (352 × 288 pixels) video frames and shown in
Fig. 2. The sequences are then divided into GOPs of size 30 frames
each, and SIFT descriptors are extracted from every frame in a GOP.
The sequence Stefan contains 90 frames while all other sequences
contain 150 frames each. Therefore, we have a total of 28 distinct
GOPs. We stack the descriptors from GOP g of video sequence s

1Available from: http://trace.eas.asu.edu/yuv/

Table 1: Compression ratio of a rank r = 30 compact descriptor.

Sequence Coast-
guard

Bus Soccer Football Hall
monitor

Stefan

Mean
descriptors
per GOP

2083 6761 1055 6186 3889 11959

Compression
ratio

98.66% 99.66% 97.26% 99.52% 99.33% 99.75%

Coastguard Bus Soccer

Football Hall monitor Stefan

Fig. 2: First frame from each of the six reference video sequences
Coastguard, Bus, Soccer, Football, Hall monitor, and Stefan.

into a matrix Xsg and solve the non-negative matrix factorization
problem (4) using Algorithm 1 to extract compact descriptors L̂sg
with rank r ∈ {10, 20, 30, . . . 80}. As a representative result, Table
1 shows the average compression ratio per video sequence achieved
by choosing a rank r = 30 compact descriptor.

4.1. Scene classification

In the scene classification experiment, we wish to identify the video
to which a GOP belongs. Therefore, we choose one query GOP from
the available 28 and match it to the remaining 27 database GOPs
so as to classify the query GOP to a video sequence. Matching is
performed according to (6) by finding the GOP whose compact de-
scriptor L̂sg correlates the most with that of the query GOP L̂Q.
The video sequence associated with the GOP ĝ is then chosen as the
matching sequence. We also compare the matching performance of
our ONMF algorithm with that of compact descriptors computed via
k-means clustering of the SIFT features and from solving a sparse
NMF problem developed in [20]. The sparse NMF formulation dif-
fers from our ONMF formulation in that the matrix R is sparse and
non-binary. In all cases, the number of clusters is set equal to the
rank of the matrix factors.

Fig. 3(a) illustrates the accuracy of matching a query GOP to
the correct sequence using each of the three algorithms. The fig-
ure shows that compact descriptors computed using the ONMF al-
gorithm exhibit a higher matching accuracy and are more discrimi-
native compared to k-means or sparse NMF. Moreover, the ONMF
classifier is more robust to the chosen number of clusters compared
to k-means. Note that sparse NMF results in a relatively poor clas-
sifier and is very sensitive to the chosen factor rank. We also test
the robustness of the compact descriptors to the scene variability by
removing from the video database the GOPs that are temporally ad-
jacent to the query GOPs. Fig. 3(b) shows the classification accuracy
where the ONMF classifier maintains its superior classification per-
formance relative to k-means and sparse NMF.
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Fig. 3: (a) Video scene classification accuracy using orthogonal
NMF, sparse NMF, and k-means clustering for varying factor rank
and number of clusters. (b) Classification accuracy after removing
from the video database the GOPs that are temporally adjacent to the
query GOP.

4.2. Object detection

In the object detection experiment, we wish to classify a moving ob-
ject in a dynamic video scene by matching it to a video database. We
assume that a user device captures a query video GOP and computes
a compact descriptor for the GOP before transmitting it for match-
ing in a video database. We consider two scenarios where (1) the
video database contains complete visual scenes and (2) the database
contains videos of separated salient objects. The visually salient ob-
jects can be extracted from dynamic video scenes via background
subtraction as in [21].

Let Xsg denote the SIFT features for whole frames of sequence
s and GOP g in the video database, while L̂Q denotes the compact
descriptors extracted from the SIFT features of whole frames in the
query scene. Also, denote by Ysg the SIFT features for only the
salient objects of sequence s and GOP g in the video database, while
F̂Q denotes the compact descriptors extracted from the SIFT features
of only the salient objects in the query scene.

Fig. 4(a) shows the accuracy of matching the compact descrip-
tor L̂Q to the database descriptors Xsg and Ysg . The performance
degrades significantly when L̂Q is matched with the salient features
alone. However, when the salient objects are segmented before com-
puting the compact descriptor F̂Q, Fig. 4(b) shows that the match-
ing performance is almost similar to the (L̂Q, Xsg) combination,
i.e., matching descriptors extracted from the complete video scenes.
Moreover, the matching accuracy of F̂Q is only mildly affected by
the exclusion of non-salient features in the database content. Finally,
we note that the ONMF solution outperforms the k-means solution
irrespective of whether the matching is done using features extracted
from the entire video frame or using features extracted only from
salient objects in the video scene.

5. DISCUSSION AND CONCLUSION

The aim of these experiments is to highlight the benefit of summa-
rizing the feature space for reducing both the query size and the stor-
age requirements in a video database. Our experiments demonstrate
that low dimensional clustering of visual features can significantly
reduce the memory requirements for representing visually salient
objects in a video scene. The results in Table 1 show that a rank
30 compact descriptor achieves storage reductions that exceed 97%
and average at 99%. Moreover, the compact descriptors maintain
their discriminability with well over 90% matching accuracy despite
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Fig. 4: (a) Object detection accuracy using orthogonal NMF and
k-means clustering for varying factor rank and number of clus-
ters, where query descriptors extracted from the complete scene are
matched against database descriptors extracted either from complete
scenes or just from salient objects. (b) Object detection accuracy us-
ing orthogonal NMF and k-means clustering for varying factor rank
and number of clusters, where query descriptors extracted only from
salient objects are matched against database descriptors extracted ei-
ther from complete scenes or just from salient objects.

the significant compression.
Algorithmically, we demonstrate that our proposed orthogonal

NMF (ONMF) method for finding low dimensional clusters is more
discriminative than both k-means clustering and sparse NMF. Our
approach is also more robust to variations in the number of clusters
than k-means. One striking observation is that while sparse NMF
outperforms k-means for very low-dimensional compact representa-
tions, it quickly becomes unstable as the number of clusters, i.e., the
rank of the factors, increases. Note that since all of the above men-
tioned clustering problems are non-convex, the solutions to these
problems depend on the initialization. Therefore, every point in our
plots is an average over 50 trials of running each algorithm.

The second set of experiments on object detection highlight the
effect of restricting the compact representation to features extracted
only from visually salient objects in a scene. The experiments show
that if the video database contains descriptors of visually salient ob-
jects alone, then computing a compact descriptor of the full query
scene negatively impacts the matching accuracy. On the other hand,
restricting the compact representation to the visually salient object
features enjoys high matching accuracy for both cases where the
database contains full scene features or visually salient object fea-
tures alone.

It is still unclear to us why our proposed ONMF algorithm per-
forms better than standard k-means clustering. It may be that the
smoothing induced by the proximal-point approach helps in avoid-
ing local minima in which k-means tends to get stuck. This remains
an open question to be resolved in future work.

In conclusion, we have shown that feature clustering is quite
successful at extracting discriminative representations of high-
dimensional feature spaces while significantly reducing the storage
and transmission requirements. Particularly in the case of video
scenes, compact descriptors computed via low-rank non-negative
matrix factorization can exploit the near stationarity of salient object
descriptors in the scene. We developed an efficient algorithm that
finds low dimensional clusters from the deluge of visual descriptors
extracted from videos. We also demonstrated through experimental
validation that compact descriptors extracted using our proposed
approach provide better discriminability and are more robust to rank
variations than k-means clustering and sparse NMF.
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