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Abstract—We propose a new method for low-complexity
compression of multispectral images based on universal vector
quantization. Our approach generalizes the recently developed
theory of universal scalar quantization to vector quantization,
and uses it in the context of distributed coding. We exploit
the availability of side information on the decoder to reduce
the encoding rate of a vector quantizer, applied to compressed
measurements of the image. The encoding reuses quantization
labels to label multiple quantization cells and leverages the side
information to select the correct cell at the decoder. The image
is reconstructed using weighted total variation minimization,
incorporating side information in the weights while enforcing
consistency with the recovered quantization cell.

Index Terms—Compressed sensing, multispectral image com-
pression, universal quantization, distributed coding

I. INTRODUCTION

Data compression is a widely studied topic and considered
a relatively mature technology. However, interest has been
renewed due to recent developments in the area of compressive
sensing, as well as ever evolving demand for signal acquisi-
tion, transmission and storage. In several modern applications,
such as satellite image transmission and lightweight mobile
computing, technological limitations impose complexity con-
straints that cannot be satisfied by conventional compression
approaches. In many of these applications, decompression is
performed in large data centers, where computational com-
plexity is a lesser concern. Thus, a number of conventional
approaches, which either balance complexity or require more
computation at the encoder side, are not appropriate. New
approaches are necessary to handle the low-complexity and
high efficiency required.

In this paper we propose a low-complexity multispectral
image compression method based on the recently developed
theory of universal quantization. Specifically, we extend our
existing work [1] by generalizing scalar universal quantization
to a vector formulation that further improves performance.
While we only describe the generalization to a 3-dimensional
vector space, further generalization is possible, at the expense
of decoding complexity. Our generalization has connections
to coset codes [2], [3], which we defer to subsequent pub-
lications. However, our work, in addition to coding, exploits
and incorporates the most recent advances in signal models,
stemming out of the compressive sensing literature.

Our focus is on multispectral images, which comprise of
a small number of spectral bands—typically 4 to 6—with

significant correlation between them. Modern compression
techniques are able to exploit these correlations and improve
the rate-distortion performance. However, this often requires
significant encoder complexity. In a number of application,
especially satellite-borne imaging systems, encoder complex-
ity can be prohibitive. Instead, it is desirable to shift the
complexity to the decoder, which is typically a big data center
with significant processing power.

Indeed, our approach exploits correlations between spectral
bands to reduce the bitrate, while maintaining extremely low
complexity at the encoder. The correlations are exploited at the
decoder, which is designed to use information from previously
decoded spectral bands as side information to augment and
decode the bitstream. Decoding and recovering the image
requires solving a sparse optimization problem very similar to
a conventional quantized compressed sensing (CS) problem.

Our contribution relies on a key realization: while CS can
be used to design light-weight encoders, it is not a rate-
efficient encoding scheme. In particular, the most significant
bits (MSBs) encode redundant information [4]. Universal
quantization removes redundancies by eliminating the MSBs.
However, this makes the reconstruction problem non-convex
possibly with combinatorial complexity. Generalizing to vector
quantization further exacerbates the problem.

As a remedy, our approach uses side information to make
the reconstruction convex and tractable, without compromising
rate-efficiency. In particular, similarly to most distributed cod-
ing schemes, the encoder only transmits information on how
to refine the prediction from the side information, i.e., the
relative location of compressive measurements of the signal
with respect to their prediction. The decoder, thus, uses the
prediction to generate a convex quantization cell in which the
measurements belong, and uses a sparse recovery algorithm to
decode the signal with measurements in that cell. In addition,
the decoder uses the side information to bias the compressive
recovery algorithm to a solution closer to the encoded signal.

The next section provides some background and establishes
notation. The approach is described in Sec. III. Finally, Sec-
tion IV provides experimental validation and discussion.

II. BACKGROUND

A. Multispectral Image Compression

Multispectral images can, in principle, be compressed using
conventional image compression techniques. However, when



encoding should have low complexity, such techniques are
often not suitable. In particular, onboard of spacecrafts compu-
tational power is very scarce. Thus, spaceborne compression
algorithms require different designs than conventional meth-
ods, such as JPEG and JPEG2000.

Similar to conventional methods, transform coding is often
the workhorse of many popular approaches [5], [6], albeit with
transforms designed to reduce computation. An alternative
approach is predictive coding with predictors mainly based on
adaptive filters [7]. A popular alternative is distributed source
coding, relying on the celebrated Slepian-Wolf and Wyner-
Ziv bounds [8], [9]. Its appeal is mostly due to encoding
simplicity [10]–[12]. These approaches treat part of the data
as side information and code the remaining data assuming
this side information is available at the decoder. The side
information might be transmitted uncompressed or using low-
complexity conventional compression techniques.

Our approach, which generalizes [1], bears similarities to
distributed coding in relying on side information during decod-
ing. However, it uses very different methods than conventional
distributing coding and enables the use of sparsity and other
modern signal models during decoding.

B. Compressed Sensing

Compressed sensing is a well-established, by now, theory
for signal acquisition, providing the ability to undersam-
ple signal and still successfully reconstruct them [13], [14].
Unique and correct reconstruction is possible using additional
knowledge about the signal and exploiting appropriate models.

The canonical CS problem considers a sparse signal x ∈
Rn. The signal is measured using random projections y = Φx,
y ∈ Rm acquired by a sensing matrix Φ ∈ Rm×n. For natural
images, sparsity in the gradient, i.e., low total variation (TV),
is usually the preferred signal model. Recovery enforces the
model through TV minimization [15]:

X̂ = arg min
X

TV(X) + λ‖y − Φx‖22, (1)

where X is a two-dimensional image, x is a vectorized version
of the image X and the isotropic TV is defined as

TV(X) =
∑
i,j

√
|Xi+1,j −Xi,j |2 + |Xi,j+1 −Xi,j |2. (2)

Using appropriate sensing matrices only m = O(k log n)�
n are required for signal reconstruction—where k measures
the model sparsity—compared to the n required if the signal
is not known to be sparse. Thus, CS acquisition preforms
an implicit compression of the signal during acquisition. A
number of matrix constructions have been shown to work,
including fully randomized ones as well as more structured
ones exploiting fast transforms, e.g., [16]–[18]. Fast transforms
are appealing for lightweight compression, because they sig-
nificantly reduce memory and computational requirements.

While CS is a very effective acquisition approach, it does
not perform well as a compression method, if implemented
in a straightforward manner. In particular CS-based compres-
sion methods suffer from poor rate-distortion performance
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Fig. 1: (a) Conventional 3-bit uniform linear quantizer and corresponding
(b) 1-bit and (c) 2-bit universal quantizers, equivalent to the uniform linear
quantizer with, respectively, 2 or 1 most significant bits removed.

compared to transform coding, despite the significant under-
sampling factor [4], [19]. The reason is that, fundamentally,
the CS-based measurements oversample the signal once the
sparsity pattern sparsity is taken into account. In hindsight,
this is expected and in-line with well-established results on
scalar quantization of oversampled signals (e.g., see [20]).

C. Universal Scalar Quantization

Universal scalar quantization (USQ) has been recently pro-
posed as an alternative quantization approach to improve the
coding efficiency of CS-based systems [21]. In particular,
while uniform scalar quantization of CS measurements only
achieves linear reduction in distortion as the number of mea-
surements increases, consistent reconstruction from universally
quantized measurements can achieves exponential reduction.

The improved performance is achieved using a non-
monotonic scalar quantizer which eliminates the MSB of a
conventional uniform scalar quantizer. Figure 1 shows ex-
amples of (a) a 3-bit conventional uniform linear quantizer
with step-size ∆ and corresponding (b) 1-bit and (c) a 2-bit
universal quantizers. Disjoint intervals that share the same 2
or 1 least significant bits in the conventional uniform quantizer
will quantize to the same value using a uniform 1- or 2-bit
quantizer.

The resulting reconstruction problem is non-convex. While
consistent reconstruction with sufficient number of measure-
ments guarantees accurate solution, it is a computationally
challenging problem with combinatorial complexity in general.
Computationally tractable reconstruction can be achieved by
designing the quantization intervals to form a hierarchy of
convex problems, often at the expense of rate efficiency [22].
Instead, [1] exploits the side information to fill-in the missing
MSBs and solve a convex problem.

III. COMPRESSION OF MULTISPECTRAL IMAGES

A. Universal Vector Quantization

Our compression approach fundamentally exploits a simple
premise: universal vector quantization can be thought of as
conventional vector quantization with missing information
such that quantization labels are reused for different parts of
the quantized vector space. In the subsequent development we
use a 3D lattice. However, for ease of visualization, a 2D



example of the principle is shown in Fig. 3(a). Of course,
higher dimensional lattices could also be used.

As shown in the figure, the quantizer tiles the space similarly
to a conventional vector quantizer. However, quantization
labels are reused, ensuring that the same label is not assigned
to bordering cells. Ideally, cells with the same label are as
separated as possible. Quantizer design and label assignment
are two very interesting problems, with several connections to
coset codes [2], [3], that we defer to future publications.

In this work we use the D3 lattice and the quantization label
of a vector y is computed using

yq = D3

( y
∆

+ w
)

mod 2B , (3)

where the D3(·) is the D3 lattice quantizer, operating on
triplets in its argument, ∆ is a scaling factor, w is an optional
dither drawn uniformly over a canonical quantization cell, and
mod is taken along each of the 3 coordinates separately. The
Voronoi regions of the D3 lattice quantizer are dodecahedra,
forming a space-filling packing in 3D. The mod function
ensures that quantizer labels are reused and that centers with
the same label have offsets equal to integer multiples of ∆2B

along each coordinate.
Since the decoder has access to reliable side information,

it can resolve the ambiguities resulting from label reuse and
solve a conventional quantized CS problem. The high-level
encoder and decoder architecture is shown in Fig. 2, the
components of which we describe in the next two sections.
Some experiment-specific details of our implementation are
described more thoroughly in Sec. IV.

B. Encoding

Similar to [1], [10], [11], we assume that the encoder
transmits one of the bands as side information, encoding it
using a standard technique. This side information, maybe
combined with additional statistics transmitted by the encoder,
is used to predict the other bands.

The remaining bands are partitioned into non-overlapping
blocks of size nx×ny . A small number of random projections
y ∈ Rm is computed for each block x ∈ Rn, n = nx × ny
using a partial Hadamard matrix Φ, obtained by randomly
subsampling the rows of the Hadamard transform. The mea-
surements are quantized in sets of 3 using the D3 lattice with
a scaling of ∆, according to (3).

When the universal vector quantizer uses the D3 lattice,
each block of three measurements can be mapped to one
of 23B−1 points. Therefore, B − 1

3 bits per measurement
are required. Taking into account the subsampling factor, the
actual rate is m

n

(
B − 1

3

)
bits per pixel (bpp).

Similarly to [1], the side information is used at the decoder
to predict the original quantization cell, thus resolving the
ambiguity arising from the mod operation, and making consis-
tent reconstruction a convex problem. However, the prediction
might make errors depending on its quality. A group is affected
by a first order error when the error vector has norm equal to
∆2B , i.e., only one of the entries of the error vector contains
either ±∆2B . The decoder itself can be made robust to some
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Fig. 2: High-level encoding and decoding architecture for the proposed
compression approach.

sparse errors, but a low quality prediction can cause more
errors than the decoder can correct.

Fortunately, the encoder also has access to the other bands
and can compute, encode, and transmit additional side infor-
mation indicating where such errors occur. Thus, the trade-
off in designing ∆ and B to introduce more or fewer errors
now manifests as additional rate required to encode the side
information with the location of the errors. Since larger ∆ and
higher B result in fewer prediction errors, they require lower
rate for error encoding, at the expense of larger reconstruc-
tion error and higher universal quantization rate, respectively.
Correspondingly, smaller ∆ and B reduce the reconstruction
distortion and universal quantization rate, respectively, but
increase the rate to encode side information on errors.

Our approach is a compromise: we explicitly encode first
order errors because their correction in the reconstruction
program is not very effective due to their small norm. This
is done in the following way. Each group has a label ranging
from 0 to m

3 − 1. The labels of groups exhibiting first order
errors are sorted by increasing order and differentially encoded
using a universal Exp-Golomb code [23]. There can only be
6 types of errors, so a code requiring at least log2(6) bits per
group is enough to distinguish the correct error. Concerning
higher order errors, the group labels are the only information
that is coded, again with a differential Exp-Golomb code.

C. Decoding

The decoder has available the universally quantized CS
measurements yq and a real-valued prediction of them p
obtained from the side information. Typically this prediction
is obtained by first predicting the signal xpred and then
measuring it using the measurement matrix: p = Φxpred +w.

Similarly to the scalar case, the prediction is used to the
determine the correct Voronoi cell in which the universally
quantized measurements belonged before universal quanti-
zation. The prediction p is quantized to the closest lattice
point pq = D3

(
p
∆

)
, and then universally quantized to obtain

puni
q = pq mod 2B . In addition to puni

q , all the neighbouring
consistent points are checked to recover the correct quantiza-
tion region. The goal is to choose the region that is consistent
with the universally quantized measurements and closest to
the prediction, as shown in Fig. 3(b) for the 2D lattice. For
the D3 lattice, there are 27 neighbouring points generated as:

ci = pq − puni
q + si, (4)



where si are all the possible combinations of elements
0, 2B ,−2B in a three-dimensional vector.

Finally, the estimated reconstruction point is:

ŷ = (cî + yq) ∆ (5)

where

î = arg min
i

∥∥∥ p
∆
− (ci + yq)

∥∥∥ (6)

Depending on the quality of the prediction and on the
chosen value of B and ∆, prediction errors might be more
or less frequent. Thus, the recovered quantized measurements
can be modeled as

ŷ = Φx + w + e + ν (7)

where ν is the quantization error and e is a vector with
elements drawn from a finite alphabet of integer multiples of
∆2B capturing the decoding errors.

Given a good prediction and suitable values of ∆, then
e tends to be group-sparse. Furthermore, as mentioned in
Sec. III-B, the encoder might include information on e which
can be used to correct some or all of the errors and reset the
corresponding coefficients of e to 0. We use S to denote the
set containing the labels of the groups containing known errors
that have not been corrected, typically of order 2 or higher.

Consistency with the quantization lattice should be enforced
in the reconstruction program. However, the Voronoi regions of
the D3 lattice are dodecahedra which can make the decoding
quite complex. An approximation is therefore used, where the
dodecahedra are replaced by spheres of radius ∆.

To recover the image, the decoder uses the recovered
measurements, aided by the image prediction. Specifically,
recovery solves a weighted TV minimization with consistent
reconstruction:

x̂ = arg min
x

WTV(X) + λf (Φx)

s.t.
∥∥yGi − (Φx + w)Gi

∥∥ ≤ ∆ if Gi * S, (8)

where WTV(·) is the isotropic weighted total variation

WTV(x) =∑
i,j

√
W

(x)
i,j (Xi,j −Xi−1,j)

2
+W

(y)
i,j (Xi,j −Xi,j−1)

2
,

f(·) penalizes decoding errors using a penalty with a mixed
`1/`2 norm, due to the group-sparsity of the errors,

f (Φx) =
∑
Gi⊆S

max
{∥∥yGi − (Φx + w)Gi

∥∥−∆, 0
}

(9)

and Wi,j are weights that determine how gradients in each
pixel of the image should be penalized.

In addition to resolving quantization ambiguities, the predic-
tion obtained from the side information is also used to derive
the weights Wi,j . Low weights are used when the gradient
magnitude of the prediction is higher than a predefined thresh-
old and high weights when the gradient is lower, a setting
similar to the weighted `1 minimization in [24]. The resulting
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Fig. 3: (a) 2D vector universal quantizer example. (b) Given a universal
quantization level, the prediction is used to select the closest corresponding
cell out of the multiple candidates.

TABLE I: Decoding PSNR at 2 bpp

band 2 band 3 band 4
(a) Prediction 33.68 dB 28.87 dB 28.35 dB
(b) Classic CS 33.24 dB 31.18 dB 33.58 dB
(c) Weighted CS 34.40 dB 31.63 dB 33.95 dB
(d) USQ 37.79 dB 32.76 dB 34.24 dB

model penalizes edges that do not exist in the prediction more
than the ones that do exist. Since prediction is derived from the
other spectral band, the model reinforces correlations between
spectral bands, especially among the edges.

The function f(·) promotes data consistency for the part
of the data in S, i.e., where we suspect there is a decoding
error. While a quadratic penalty is a more common data
consistency penalty, in [1] we showed that a similar penalty
for the universal scalar quantizer enabled the recovery of
some decoding errors thanks to their sparsity. The penalty
we propose in this paper is a generalization to block-sparse
vectors, as it fits the kind of decoding errors arising in vector
universal quantization.

IV. EXPERIMENTAL RESULTS

We tested the scheme on the 512 × 512 × 4 multispectral
image shown in Fig. 4. The first band, i.e., blue, is used as side
information to predict the content of the other bands and it is
compressed losslessly in our experiments. We separate each
image in blocks of 32× 32 and code each block separately.

To predict band b for each block we use classical linear
prediction from the same block in band 1:

x̂b =
σ1b

σ2
1

(xr − µ1) + µb, (10)

where µb is the block mean for band b, σ2
b is the variance,

and σ1b the covariance of b with block 1. The parameters are
computed at the encoder and transmitted as side information.
Assuming 16-bit values in the worst case, the overhead is
0.047 bits per pixel (bpp).

Using the prediction we decode the universally quantized
measurements as described in Sec. III-C. First order errors and
their sign are detected at the encoder, transmitted and corrected
at the decoder. For second and higher order errors, only their
location is transmitted to form the set S during decoding. The
total overhead to transmit the errors is variable and depends
on the choice of ∆ and B.

Table I, replicated from [1], compares the PSNR obtained
by (a) simple linear prediction, a classic CS encoder using
a uniform scalar quantizer at a compression rate of 2 bpp
and reconstruction using (b) TV minimization or (c) WTV
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Fig. 4: (a) Test multispectral image acquired using the AVNIR-2 instrument of the ALOS satellite [25]. This image of a coastal city exhibits complexity
and details that challenge compression algorithms. The experimental rate-distortion curves, in figures (b), (c) and (d), compare universal scalar quantization
(blue curve) with universal vector quantization (red curve) for bands 2, 3, and 4, assuming band 1 is used as reference.

minimization using weights obtained from the reference band,
and (d) universal scalar quantization (USQ) at the same
rate. It is evident from the table that universal quantization
significantly improves performance over simpler approaches.
It should also be noted that bands 3 and 4, (red and infrared),
are more difficult to predict from band 1 (blue) compared to
band 2 (green), and therefore, performance suffers.

Figures 4(b), (c), and (d) demonstrate the performance the
proposed universal vector quantization on spectral bands 2,
3, and 4, respectively. The figures plot the rate-distortion
trade-off for universal vector quantization (red), compared
to universal scalar quantization (blue). As evident, universal
vector quantization further improves the reconstruction PSNR
by 1-2 dB. In particular, more improvement is exhibited when
prediction is harder, i.e., bands 3 and 4.

In summary, the proposed approach significantly improves
performance, especially when universal scalar quantization
suffers because of lower prediction quality. It should be noted
that the method used in the experiments is not particularly
optimized. A number of improvements could further boost
performance such as better choice of the parameters m, ∆
and B that could be optimized per block, instead of per band,
or better prediction schemes, to name a few.
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